Skip to main content

Return to Play in Gymnastics

  • Chapter
  • First Online:
Gymnastics Medicine

Abstract

Injury rates in gymnastics are among the highest in men’s and women’s sports. Gymnastics requires full body utilization, as both the upper extremity and lower extremity are used for weight-bearing and experience repetitive exposure to high ground reaction forces. However, despite the increasing frequency of gymnastics participation among youth populations, and the unique physical demands required of the sport, there is very little evidence-based research on best practices for return to play (RTP) protocols for gymnasts following injury. General RTP principles and the extraordinary demands of gymnasts must be well understood in order to create an effective, but safe, RTP protocol that returns gymnasts to sport while minimizing the risk of reinjury or the development of new injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sweeney EA, Howell DR, James DA, Potter MN, Provance AJ. Returning to sport after gymnastics injuries. Curr Sports Med Rep. 2018;17:376–90. https://doi.org/10.1249/JSR.0000000000000533.

    Article  PubMed  Google Scholar 

  2. Sands WA. Injury prevention in women’s gymnastics. Sports Med. 2000;30:359–73. https://doi.org/10.2165/00007256-200030050-00004.

    Article  CAS  PubMed  Google Scholar 

  3. Wade M, Campbell A, Smith A, Norcott J, O’Sullivan P. Investigation of spinal posture signatures and ground reaction forces during landing in elite female gymnasts. J Appl Biomech. 2012;28:677–86.

    Article  Google Scholar 

  4. Kruse D, Lemmen B. Spine injuries in the sport of gymnastics. Curr Sports Med Rep. 2009;8:20–8. https://doi.org/10.1249/JSR.0b013e3181967ca6.

    Article  PubMed  Google Scholar 

  5. Ardern CL, Glasgow P, Schneiders A, Witvrouw E, Clarsen B, Cools A, et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br J Sports Med. 2016;50:853–64. https://doi.org/10.1136/bjsports-2016-096278.

    Article  PubMed  Google Scholar 

  6. Fournier M. Principles of rehabilitation and return to sports following injury. Clin Podiatr Med Surg. 2015;32:261–8. https://doi.org/10.1016/j.cpm.2014.11.009.

    Article  PubMed  Google Scholar 

  7. Sclafani MP, Davis CC. Return to play progression for rugby following injury to the lower extremity: a clinical commentary and review of the literature. Int J Sports Phys Ther. 2016;11:302–20.

    PubMed  PubMed Central  Google Scholar 

  8. McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51:838–47. https://doi.org/10.1136/bjsports-2017-097699.

    Article  Google Scholar 

  9. Hsu C-J, Meierbachtol A, George SZ, Chmielewski TL. Fear of reinjury in athletes. Sports Health. 2016;9:162–7. https://doi.org/10.1177/1941738116666813.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Podlog L, Dimmock J, Miller J. A review of return to sport concerns following injury rehabilitation: practitioner strategies for enhancing recovery outcomes. Phys Ther Sport. 2011;12:36–42. https://doi.org/10.1016/j.ptsp.2010.07.005.

    Article  PubMed  Google Scholar 

  11. Collins MW, Kontos AP, Okonkwo DO, Almquist J, Bailes J, Barisa M, et al. Concussion is Treatable: Statements of Agreement from the Targeted Evaluation and Active Management (TEAM) Approaches to Treating Concussion Meeting held in Pittsburgh, October 15–16, 2015. Neurosurgery. 2016;79:912–29. https://doi.org/10.1227/NEU.0000000000001447.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grool AM, Aglipay M, Momoli F, Meehan WP, Freedman SB, Yeates KO, et al. Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. JAMA. 2016;316:2504–14. https://doi.org/10.1001/jama.2016.17396.

    Article  PubMed  Google Scholar 

  13. Meske S, Hazzard JB, Ni M, Hanson T, Van Horn L, Smith J. The prevalence of traumatic brain injury and on-campus service utilization among undergraduate students. J Head Trauma Rehabil. 2019;34:E18. https://doi.org/10.1097/HTR.0000000000000407.

    Article  PubMed  Google Scholar 

  14. Leddy JJ, Baker JG, Willer B. Active rehabilitation of concussion and post-concussion syndrome. Phys Med Rehabil Clin N Am. 2016;27:437–54. https://doi.org/10.1016/j.pmr.2015.12.003.

    Article  PubMed  Google Scholar 

  15. May KH, Marshall DL, Burns TG, Popoli DM, Polikandriotis JA. Pediatric sports specific return to play guidelines following concussion. Int J Sports Phys Ther. 2014;9:242–55.

    PubMed  PubMed Central  Google Scholar 

  16. Corwin DJ, Wiebe DJ, Zonfrillo MR, Grady MF, Robinson RL, Goodman AM, et al. Vestibular deficits following youth concussion. J Pediatr. 2015;166:1221–5. https://doi.org/10.1016/j.jpeds.2015.01.039.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zuckerman SL, Brett BL, Jeckell AS, Yengo-Kahn AM, Solomon GS. Prognostic factors in pediatric sport-related concussion. Curr Neurol Neurosci Rep. 2018;18:104. https://doi.org/10.1007/s11910-018-0909-4.

    Article  PubMed  Google Scholar 

  18. Park K, Ksiazek T, Olson B. Effectiveness of vestibular rehabilitation therapy for treatment of concussed adolescents with persistent symptoms of dizziness and imbalance. J Sport Rehabil. 2018;27:485–90. https://doi.org/10.1123/jsr.2016-0222.

    Article  PubMed  Google Scholar 

  19. Beidler E, Bretzin AC, Hanock C, Covassin T. Sport-related concussion: knowledge and reporting behaviors among collegiate club-sport athletes. J Athl Train. 2018;53:866–72. https://doi.org/10.4085/1062-6050-266-17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vaughan CG, Gerst EH, Sady MD, Newman JB, Gioia GA. The relation between testing environment and baseline performance in child and adolescent concussion assessment. Am J Sports Med. 2014;42:1716–23. https://doi.org/10.1177/0363546514531732.

    Article  PubMed  Google Scholar 

  21. Bonci CM, Bonci LJ, Granger LR, Johnson CL, Malina RM, Milne LW, et al. National athletic trainers’ association position statement: preventing, detecting, and managing disordered eating in athletes. J Athl Train. 2008;43:80–108.

    Article  Google Scholar 

  22. Meier TB, Brummel BJ, Singh R, Nerio CJ, Polanski DW, Bellgowan PSF. The underreporting of self-reported symptoms following sports-related concussion. J Sci Med Sport. 2015;18:507–11. https://doi.org/10.1016/j.jsams.2014.07.008.

    Article  PubMed  Google Scholar 

  23. Caine DJ. Injury epidemiology. Sci Asp Womens Gymnast. 2003;45:72–109. https://doi.org/10.1159/000067494.

    Article  Google Scholar 

  24. Meeusen R, Borms J. Gymnastic Injuries. Sports Med. 1992;13:337–56. https://doi.org/10.2165/00007256-199213050-00004.

    Article  CAS  PubMed  Google Scholar 

  25. Kegerreis S. The construction and implementation of functional progressions as a component of athletic rehabilitation. J Orthop Sports Phys Ther. 1983;5:14–9. https://doi.org/10.2519/jospt.1983.5.1.14.

    Article  CAS  PubMed  Google Scholar 

  26. Andrew TL. Closed kinetic chain exercise. A comprehensive guide to multiple-joint exercises. J Chiropr Med. 2002;1:200. https://doi.org/10.1016/S0899-3467(07)60039-1.

    Article  PubMed Central  Google Scholar 

  27. McLaren K, Byrd E, Herzog M, Polikandriotis JA, Willimon SC. Impact shoulder angles correlate with impact wrist angles in standing back handsprings in preadolescent and adolescent female gymnasts. Int J Sports Phys Ther. 2015;10:341–6.

    PubMed  PubMed Central  Google Scholar 

  28. Bahr R, Engebretsen L, IOC Medical Commission, editors. Sports injury prevention. Chichester, UK/Hoboken, NJ: Wiley-Blackwell; 2009.

    Google Scholar 

  29. Sands WA, Shultz BB, Newman AP. Women’s gymnastics injuries. A 5-year study. Am J Sports Med. 1993;21:271–6. https://doi.org/10.1177/036354659302100218.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson NG, Metzing M. Joint mobility and force application during the thrust phase of the front handspring on floor exercise. ISBS - Conf Proc Arch 1994;1.

    Google Scholar 

  31. Wadley GH, Albright JP. Women’s intercollegiate gymnastics. Injury patterns and “permanent” medical disability. Am J Sports Med. 1993;21:314–20. https://doi.org/10.1177/036354659302100224.

    Article  CAS  PubMed  Google Scholar 

  32. Berryman, Reese N, Bandy WD. Joint range of motion and muscle length testing. 3rd ed. St. Louis, MO: Elsevier; 2017.

    Google Scholar 

  33. Guerra MRV, Estelles JRD, Abdouni YA, Falcochio DF, Rosa JRP, Catani LH. Frequency of wrist growth plate injury in young gymnasts at a training center. Acta Ortop Bras. 2016;24:204–7. https://doi.org/10.1590/1413-785220162404157422.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pongetti Angeletti G. Gymnastics medicine for you. Gina Pongetti Angeletti and MedGym LLC; 2012

    Google Scholar 

  35. Sands WA. Lowering to a back bend. Technique. 1994;14:8.

    Google Scholar 

  36. Horsley I, Herrington L, Hoyle R, Prescott E, Bellamy N. Do changes in hand grip strength correlate with shoulder rotator cuff function? Shoulder Elbow. 2016;8:124–9. https://doi.org/10.1177/1758573215626103.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mandalidis D, O’Brien M. Relationship between hand-grip isometric strength and isokinetic moment data of the shoulder stabilisers. J Bodyw Mov Ther. 2010;14:19–26. https://doi.org/10.1016/j.jbmt.2008.05.001.

    Article  PubMed  Google Scholar 

  38. Balogun JA, Akomolafe CT, Amusa LO. Grip strength: effects of testing posture and elbow position. Arch Phys Med Rehabil. 1991;72:280–3.

    CAS  PubMed  Google Scholar 

  39. Alizadehkhaiyat O, Fisher AC, Kemp GJ, Vishwanathan K, Frostick SP. Shoulder muscle activation and fatigue during a controlled forceful hand grip task. J Electromyogr Kinesiol. 2011;21:478–82. https://doi.org/10.1016/j.jelekin.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  40. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg. 1984;9:222–6.

    Article  CAS  Google Scholar 

  41. Petersen P, Petrick M, Connor H, Conklin D. Grip strength and hand dominance: challenging the 10% rule. Am J Occup Ther. 1989;43:444–7.

    Article  CAS  Google Scholar 

  42. Weiss JM. Hypermobility and specific joint pathology in young competitive gymnasts; n.d., p. 49.

    Google Scholar 

  43. Myers TW. Anatomy trains: myofascial meridians for manual and movement therapists. 3rd ed. Edinburgh, Churchill Livingstone; 2014.

    Google Scholar 

  44. Cook G, Burton L, Kiesel K, Rose G, Byrant MF. Movement functional movement systems: screening, assessment, corrective strategies. 1st ed. Santa Cruz, CA: On Target Publications; 2011.

    Google Scholar 

  45. Sahrmann S. Diagnosis and treatment of movement impairment syndromes. 1st ed. St. Louis, MO: Mosby; 2001.

    Google Scholar 

  46. Tucci HT, Martins J, Sposito G de C, Camarini PMF, de Oliveira AS. Closed Kinetic Chain Upper Extremity Stability test (CKCUES test): a reliability study in persons with and without shoulder impingement syndrome. BMC Musculoskelet Disord. 2014;15(1) https://doi.org/10.1186/1471-2474-15-1.

  47. Westrick RB, Miller JM, Carow SD, Gerber JP. Exploration of the y-balance test for assessment of upper quarter closed kinetic chain performance. Int J Sports Phys Ther. 2012;7:139–47.

    PubMed  PubMed Central  Google Scholar 

  48. Huxel Bliven KC, Anderson BE. Core stability training for injury prevention. Sports Health. 2013;5:514–22. https://doi.org/10.1177/1941738113481200.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Silfies SP, Ebaugh D, Pontillo M, Butowicz CM. Critical review of the impact of core stability on upper extremity athletic injury and performance. Braz J Phys Ther. 2015;19:360–8. https://doi.org/10.1590/bjpt-rbf.2014.0108.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Radwan A, Francis J, Green A, Kahl E, Maciurzynski D, Quartulli A, et al. Is there a relation between shoulder dysfunction and core instability? Int J Sports Phys Ther. 2014;9:8–13.

    PubMed  PubMed Central  Google Scholar 

  51. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36:189–98.

    Article  Google Scholar 

  52. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology part I: pathoanatomy and biomechanics. Arthrosc J Arthrosc Relat Surg. 2003;19:404–20. https://doi.org/10.1053/jars.2003.50128.

    Article  Google Scholar 

  53. Davies GJ, Dickoff-Hoffman S. Neuromuscular testing and rehabilitation of the shoulder complex. J Orthop Sports Phys Ther. 1993;18:449–58. https://doi.org/10.2519/jospt.1993.18.2.449.

    Article  CAS  PubMed  Google Scholar 

  54. Kibler BW, Sciascia A. Kinetic chain contributions to elbow function and dysfunction in sports. Clin Sports Med. 2004;23:545–52, viii. https://doi.org/10.1016/j.csm.2004.04.010.

    Article  PubMed  Google Scholar 

  55. Meister K. Injuries to the shoulder in the throwing athlete. Part one: biomechanics/pathophysiology/classification of injury. Am J Sports Med. 2000;28:265–75. https://doi.org/10.1177/03635465000280022301.

    Article  CAS  PubMed  Google Scholar 

  56. Kibler WB, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med. 2010;44:300–5. https://doi.org/10.1136/bjsm.2009.058834.

    Article  PubMed  Google Scholar 

  57. Paine R, Voight ML. The role of the scapula. Int J Sports Phys Ther. 2013;8:617–29.

    PubMed  PubMed Central  Google Scholar 

  58. Paine RM, Voight M. The role of the scapula. J Orthop Sports Phys Ther. 1993;18:386–91. https://doi.org/10.2519/jospt.1993.18.1.386.

    Article  CAS  PubMed  Google Scholar 

  59. Cools AM, Geerooms E, Van den Berghe DFM, Cambier DC, Witvrouw EE. Isokinetic scapular muscle performance in young elite gymnasts. J Athl Train. 2007;42:458–63.

    PubMed  PubMed Central  Google Scholar 

  60. Krause DA, Youdas JW, Hollman JH, Smith J. Abdominal muscle performance as measured by the double leg-lowering test. Arch Phys Med Rehabil. 2005;86:1345–8. https://doi.org/10.1016/j.apmr.2004.12.020.

    Article  PubMed  Google Scholar 

  61. Latimer J, Maher CG, Refshauge K, Colaco I. The reliability and validity of the Biering–Sorensen test in asymptomatic subjects and subjects reporting current or previous nonspecific low Back pain. Spine. 1999;24:2085.

    Article  CAS  Google Scholar 

  62. McGill SM, Childs A, Liebenson C. Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil. 1999;80:941–4. https://doi.org/10.1016/S0003-9993(99)90087-4.

    Article  CAS  PubMed  Google Scholar 

  63. Tong TK, Wu S, Nie J. Sport-specific endurance plank test for evaluation of global core muscle function. Phys Ther Sport. 2014;15:58–63. https://doi.org/10.1016/j.ptsp.2013.03.003.

    Article  PubMed  Google Scholar 

  64. Cuthbert SC, Goodheart GJ. On the reliability and validity of manual muscle testing: a literature review. Chiropr Osteopat. 2007;15:4. https://doi.org/10.1186/1746-1340-15-4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sleeper MD, Kenyon LK, Casey E. Measuring fitness in female gymnasts: the gymnastics functional measurement tool. Int J Sports Phys Ther. 2012;7(2):124–38.

    PubMed  PubMed Central  Google Scholar 

  66. Sleeper MD, Kenyon LK, Elliott JM, Cheng MS. Measuring sport-specific physical abilities in male gymnasts: the men’s gymnastics functional measurement tool. Int J Sports Phys Ther. 2016;11(7):1082–100.

    PubMed  PubMed Central  Google Scholar 

  67. Penitente G, Merni F, Sands W. Kinematic analysis of the centre of mass in the back handspring: a case study. Gym Coach. 2011;4:1–11.

    Google Scholar 

  68. Penitente G, Sands WA. Exploratory investigation of impact loads during the forward handspring vault. J Hum Kinet. 2015;46:59–68. https://doi.org/10.1515/hukin-2015-0034.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hogarth LW, Deakin G, Sinclair W. Are plyometric push-ups a reliable power assessment tool? JASC. 2013;21:4.

    Google Scholar 

  70. Falsone SA, Gross MT, Guskiewicz KM, Schneider RA. One-arm hop test: reliability and effects of arm dominance. J Orthop Sports Phys Ther. 2002;32:98–103. https://doi.org/10.2519/jospt.2002.32.3.98.

    Article  PubMed  Google Scholar 

  71. Harris C, Wattles AP, DeBeliso M, Sevene-Adams PG, Berning JM, Adams KJ. The seated medicine ball throw as a test of upper body power in older adults. J Strength Cond Res. 2011;25:2344. https://doi.org/10.1519/JSC.0b013e3181ecd27b.

    Article  PubMed  Google Scholar 

  72. Negrete RJ, Hanney WJ, Kolber MJ, Davies GJ, Ansley MK, McBride AB, et al. Reliability, minimal detectable change, and normative values for tests of upper extremity function and power. J Strength Cond Res. 2010;24:3318–25. https://doi.org/10.1519/JSC.0b013e3181e7259c.

    Article  PubMed  Google Scholar 

  73. Zetaruk MN. The young gymnast. Clin Sports Med. 2000;19:757–80. https://doi.org/10.1016/S0278-5919(05)70236-2.

    Article  CAS  PubMed  Google Scholar 

  74. Caine D, Cochrane B, Caine C, Zemper E. An epidemiologic investigation of injuries affecting young competitive female gymnasts. Am J Sports Med. 1989;17:811–20. https://doi.org/10.1177/036354658901700616.

    Article  CAS  PubMed  Google Scholar 

  75. Hall SJ. Mechanical contribution to lumbar stress injuries in female gymnasts. Med Sci Sports Exerc. 1986;18:599–602.

    Article  CAS  Google Scholar 

  76. Kujala UM, Taimela S, Oksanen A, Salminen JJ. Lumbar mobility and low back pain during adolescence. A longitudinal three-year follow-up study in athletes and controls. Am J Sports Med. 1997;25:363–8. https://doi.org/10.1177/036354659702500316.

    Article  CAS  PubMed  Google Scholar 

  77. Caine DJ, Maffulli N. Epidemiology of children’s individual sports injuries. An important area of medicine and sport science research. Med Sport Sci. 2005;48:1–7. https://doi.org/10.1159/000084274.

    Article  PubMed  Google Scholar 

  78. Panzer V, Wood GA, Bates BT, Mason BR. Lower extremity loads in landings of elite gymnasts. In: de Groot G, et al., editors. Biomechanics XI-B. Amsterdam: Free University Press; 1988. p. 727–35.

    Google Scholar 

  79. Kerr ZY, Hayden R, Barr M, Klossner DA, Dompier TP. Epidemiology of National Collegiate Athletic Association Women’s Gymnastics Injuries, 2009–2010 Through 2013–2014. J Athl Train. 2015;50:870–8. https://doi.org/10.4085/1062-6050-50.7.02.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gittoes M, Irwin G. Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings. Sports Med Arthrosc Rehabil Ther Technol. 2012;4:4. https://doi.org/10.1186/1758-2555-4-4.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Micheli LJ. Back injuries in gymnastics. Clin Sports Med. 1985;4:85–93.

    CAS  PubMed  Google Scholar 

  82. Standaert C, Herring S. Spondylolysis: a critical review. Br J Sports Med. 2000;34:415–22. https://doi.org/10.1136/bjsm.34.6.415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jackson DW, Wiltse LL, Cirincoine RJ. Spondylolysis in the female gymnast. Clin Orthop. 1976:68–73.

    Google Scholar 

  84. Cooke PM, Lutz GE. Internal disc disruption and axial back pain in the athlete. Phys Med Rehabil Clin N Am. 2000;11:837–65.

    Article  CAS  Google Scholar 

  85. Sands WA, McNeal JR, Penitente G, Murray SR, Nassar L, Jemni M, et al. Stretching the spines of gymnasts: a review. Sports Med. 2016;46:315–27. https://doi.org/10.1007/s40279-015-0424-6.

    Article  PubMed  Google Scholar 

  86. Sarkar DA, Sarkar DMD. Early low back pain caused by bad posture and weak back and abdominal muscles. Int J Sci Res. 2018;7

    Google Scholar 

  87. Liebenson C. Rehabilitation of the spine: a practitioner’s manual. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  88. Page MP, Frank CC, Lardner R. Assessment and treatment of muscle imbalance: the Janda Approach. 1st ed. Champaign, IL: Human Kinetics; 2010.

    Google Scholar 

  89. Weber MD, Woodall WR. Spondylogenic disorders in gymnasts. J Orthop Sports Phys Ther. 1991;14:6–13. https://doi.org/10.2519/jospt.1991.14.1.6.

    Article  CAS  PubMed  Google Scholar 

  90. Gould J, Davies G. Orthopaedic and sports physical therapy. 2nd ed. St. Louis: C.V. Mosby Co; 1985.

    Google Scholar 

  91. Kenworthy KL. Global Posture of Female Collegiate Gymnasts and Their Peers [Internet]. [California, PA]: California University of Pennsylvania; 2008. Available from: http://libweb.calu.edu/thesis/umi-cup-1063.pdf.

  92. Watson AW, Mac Donncha C. A reliable technique for the assessment of posture: assessment criteria for aspects of posture. J Sports Med Phys Fitness. 2000;40:260–70.

    CAS  PubMed  Google Scholar 

  93. Chang W-D, Lin H-Y, Lai P-T. Core strength training for patients with chronic low back pain. J Phys Ther Sci. 2015;27:619–22. https://doi.org/10.1589/jpts.27.619.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Akuthota V, Ferreiro A, Moore T, Fredericson M. Core stability exercise principles. Curr Sports Med Rep. 2008;7:39–44. https://doi.org/10.1097/01.CSMR.0000308663.13278.69.

    Article  PubMed  Google Scholar 

  95. Coulombe BJ, Games KE, Neil ER, Eberman LE. Core stability exercise versus general exercise for chronic low back pain. J Athl Train. 2017;52:71–2. https://doi.org/10.4085/1062-6050-51.11.16.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Alqarni AM, Schneiders AG, Hendrick PA. Clinical tests to diagnose lumbar segmental instability: a systematic review. J Orthop Sports Phys Ther. 2011;41:130–40. https://doi.org/10.2519/jospt.2011.3457.

    Article  PubMed  Google Scholar 

  97. Tidstrand J, Horneij E. Inter-rater reliability of three standardized functional tests in patients with low back pain. BMC Musculoskelet Disord. 2009;10:58. https://doi.org/10.1186/1471-2474-10-58.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Youdas JW, Hartman JP, Murphy BA, Rundle AM, Ugorowski JM, Hollman JH. Magnitudes of muscle activation of spine stabilizers, gluteals, and hamstrings during supine bridge to neutral position. Physiother Theory Pract. 2015;31:418–27. https://doi.org/10.3109/09593985.2015.1010672.

    Article  PubMed  Google Scholar 

  99. Kivlan BR, Martin RL. Functional performance testing of the hip in athletes: a systematic review for reliability and validity. Int J Sports Phys Ther. 2012;7:402–12.

    PubMed  PubMed Central  Google Scholar 

  100. Norris B, Trudelle-Jackson E. Hip- and thigh-muscle activation during the star excursion balance test. J Sport Rehabil. 2011;20:428–41.

    Article  Google Scholar 

  101. Crossley KM, Zhang W-J, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39:866–73. https://doi.org/10.1177/0363546510395456.

    Article  PubMed  Google Scholar 

  102. Suehiro T, Mizutani M, Ishida H, Kobara K, Osaka H, Watanabe S. Individuals with chronic low back pain demonstrate delayed onset of the back muscle activity during prone hip extension. J Electromyogr Kinesiol. 2015;25:675–80. https://doi.org/10.1016/j.jelekin.2015.04.013.

    Article  PubMed  Google Scholar 

  103. Clement DB. Tibial stress syndrome in athletes. J Sports Med. 1974;2:81–5.

    Article  CAS  Google Scholar 

  104. Swain C, Redding E. Trunk muscle endurance and low back pain in female dance students. J Dance Med Sci. 2014;18:62–6. https://doi.org/10.12678/1089-313X.18.2.62.

    Article  PubMed  Google Scholar 

  105. Evans K, Refshauge KM, Adams R. Trunk muscle endurance tests: reliability, and gender differences in athletes. J Sci Med Sport. 2007;10:447–55. https://doi.org/10.1016/j.jsams.2006.09.003.

    Article  PubMed  Google Scholar 

  106. Waldhelm A, Li L. Endurance tests are the most reliable core stability related measurements. J Sport Health Sci. 2012;1:121–8. https://doi.org/10.1016/j.jshs.2012.07.007.

    Article  Google Scholar 

  107. Hall E, Bishop DC, Gee TI. Effect of plyometric training on handspring vault performance and functional power in youth female gymnasts. PLoS One. 2016;11:e0148790. https://doi.org/10.1371/journal.pone.0148790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091–116. https://doi.org/10.1007/s00421-016-3346-6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stockbrugger BA, Haennel RG. Validity and reliability of a medicine ball explosive power test. J Strength Cond Res. 2001;15:431–8.

    CAS  PubMed  Google Scholar 

  110. Ikeda Y, Miyatsuji K, Kawabata K, Fuchimoto T, Ito A. Analysis of trunk muscle activity in the side medicine-ball throw. J Strength Cond Res. 2009;23:2231. https://doi.org/10.1519/JSC.0b013e3181b8676f.

    Article  PubMed  Google Scholar 

  111. Saluan P, Styron J, Ackley JF, Prinzbach A, Billow D. Injury types and incidence rates in precollegiate female gymnasts. Orthop J Sports Med. 2015;3:232596711557759. https://doi.org/10.1177/2325967115577596.

    Article  Google Scholar 

  112. Kirialanis P, Malliou P, Beneka A, Giannakopoulos K. Occurrence of acute lower limb injuries in artistic gymnasts in relation to event and exercise phase. Br J Sports Med. 2003;37:137–9. https://doi.org/10.1136/bjsm.37.2.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hughes LY. Biomechanical analysis of the foot and ankle for predisposition to developing stress fractures. J Orthop Sports Phys Ther. 1985;7:96–101.

    Article  CAS  Google Scholar 

  114. Dill KE, Begalle RL, Frank BS, Zinder SM, Padua DA. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J Athl Train. 2014;49:723–32. https://doi.org/10.4085/1062-6050-49.3.29.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bell-Jenje T, Olivier B, Wood W, Rogers S, Green A, McKinon W. The association between loss of ankle dorsiflexion range of movement, and hip adduction and internal rotation during a step down test. Man Ther. 2016;21:256–61. https://doi.org/10.1016/j.math.2015.09.010.

    Article  CAS  PubMed  Google Scholar 

  116. Mason-Mackay AR, Whatman C, Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: a systematic review. J Sci Med Sport. 2017;20:451–8. https://doi.org/10.1016/j.jsams.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  117. Lima YL, Ferreira VMLM, de Paula Lima PO, Bezerra MA, de Oliveira RR, Almeida GPL. The association of ankle dorsiflexion and dynamic knee valgus: a systematic review and meta-analysis. Phys Ther Sport. 2018;29:61–9. https://doi.org/10.1016/j.ptsp.2017.07.003.

    Article  PubMed  Google Scholar 

  118. Neely FG. Biomechanical risk factors for exercise-related lower limb injuries. Sports Med. 1998;26:395–413. https://doi.org/10.2165/00007256-199826060-00003.

    Article  CAS  PubMed  Google Scholar 

  119. Fong C-M, Blackburn JT, Norcross MF, McGrath M, Padua DA. Ankle-dorsiflexion range of motion and landing biomechanics. J Athl Train. 2011;46:5–10. https://doi.org/10.4085/1062-6050-46.1.5.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pope R, Herbert R, Kirwan J. Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in Army recruits. Aust J Physiother. 1998;44:165–72. https://doi.org/10.1016/S0004-9514(14)60376-7.

    Article  PubMed  Google Scholar 

  121. Youdas JW, McLean TJ, Krause DA, Hollman JH. Changes in active ankle dorsiflexion range of motion after acute inversion ankle sprain. J Sport Rehabil. 2009;18:358–74.

    Article  Google Scholar 

  122. Rabin A, Kozol Z, Finestone AS. Limited ankle dorsiflexion increases the risk for mid-portion Achilles tendinopathy in infantry recruits: a prospective cohort study. J Foot Ankle Res. 2014;7:48. https://doi.org/10.1186/s13047-014-0048-3.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27:699–706. https://doi.org/10.1177/03635465990270060301.

    Article  CAS  PubMed  Google Scholar 

  124. Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13:316–25.

    Article  Google Scholar 

  125. Pool-Goudzwaard AL, Vleeming A, Stoeckart R, Snijders CJ, Mens JMA. Insufficient lumbopelvic stability: a clinical, anatomical and biomechanical approach to ‘a-specific’ low back pain. Man Ther. 1998;3:12–20. https://doi.org/10.1054/math.1998.0311.

    Article  PubMed  Google Scholar 

  126. Prather H. Pelvis and sacral dysfunction in sports and exercise. Phys Med Rehabil Clin N Am. 2000;11:805–36, viii.

    Article  CAS  Google Scholar 

  127. Reid DC, Burnham RS, Saboe LA, Kushner SF. Lower extremity flexibility patterns in classical ballet dancers and their correlation to lateral hip and knee injuries. Am J Sports Med. 1987;15:347–52. https://doi.org/10.1177/036354658701500409.

    Article  CAS  PubMed  Google Scholar 

  128. Kim M-K, Kong B-S, Yoo K-T. Effects of open and closed kinetic-chain exercises on the muscle strength and muscle activity of the ankle joint in young healthy women. J Phys Ther Sci. 2017;29:1903–6. https://doi.org/10.1589/jpts.29.1903.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Prisk VR, O’Loughlin PF, Kennedy JG. Forefoot injuries in dancers. Clin Sports Med. 2008;27:305–20. https://doi.org/10.1016/j.csm.2007.12.005.

    Article  PubMed  Google Scholar 

  130. Steinberg N, Siev-Ner I, Peleg S, Dar G, Masharawi Y, Zeev A, et al. Joint range of motion and patellofemoral pain in dancers. Int J Sports Med. 2012;33:561–6. https://doi.org/10.1055/s-0031-1301330.

    Article  CAS  PubMed  Google Scholar 

  131. Bliss LS, Teeple P. Core stability: the centerpiece of any training program. Curr Sports Med Rep. 2005;4:179. https://doi.org/10.1097/01.CSMR.0000306203.26444.4e.

    Article  PubMed  Google Scholar 

  132. Rickman AM, Ambegaonkar JP, Cortes N. Core stability: implications for dance injuries. Med Probl Perform Art. 2012;27:159–64.

    PubMed  Google Scholar 

  133. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36:926–34.

    Article  Google Scholar 

  134. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44:355–61. https://doi.org/10.1177/0363546515616237.

    Article  PubMed  Google Scholar 

  135. Hansberger BL, Acocello S, Slater LV, Hart JM, Ambegaonkar JP. Peak lower extremity landing kinematics in dancers and nondancers. J Athl Train. 2018;53:379–85. https://doi.org/10.4085/1062-6050-465-16.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cichanowski HR, Schmitt JS, Johnson RJ, Niemuth PE. Hip strength in collegiate female athletes with patellofemoral pain. Med Sci Sports Exerc. 2007;39:1227–32. https://doi.org/10.1249/mss.0b013e3180601109.

    Article  PubMed  Google Scholar 

  137. Rosene JM, Fogarty TD, Mahaffey BL. Isokinetic hamstrings:quadriceps ratios in intercollegiate athletes. J Athl Train. 2001;36:378–83.

    PubMed  PubMed Central  Google Scholar 

  138. Vogelpohl R, Wolz L, Neltner T, Burkhardt Z, Bonner T, Ericksen H. Comparison of isokinetic knee flexion and extension strength between trained dancers and traditional sport female collegiate athletes. Int J Exerc Sci. 2017;10:1196–207.

    Google Scholar 

  139. Jaiyesimi AO, Jegede JA. Hamstring and quadriceps strength ratio: effect of age and gender. J Niger Soc Physiother. 2005;15:54–8.

    Google Scholar 

  140. Murphy DF, Connolly DA, Beynnon BD. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med. 2003;37:13–29. https://doi.org/10.1136/bjsm.37.1.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dahle LK, Mueller M, Delitto A, Diamond JE. Visual assessment of foot type and relationship of foot type to lower extremity injury. J Orthop Sports Phys Ther. 1991;14:70–4. https://doi.org/10.2519/jospt.1991.14.2.70.

    Article  CAS  PubMed  Google Scholar 

  142. Beckett ME, Massie DL, Bowers KD, Stoll DA. Incidence of hyperpronation in the ACL injured knee: a clinical perspective. J Athl Train. 1992;27:58–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Allen MK, Glasoe WM. Metrecom measurement of navicular drop in subjects with anterior cruciate ligament injury. J Athl Train. 2000;35:403–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gribble PA, Hertel J, Plisky P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train. 2012;47:339–57.

    Article  Google Scholar 

  145. Birmingham TB. Test-retest reliability of lower extremity functional instability measures. Clin J Sport Med. 2000;10:264–8.

    Article  CAS  Google Scholar 

  146. Kim S-H, Kwon O-Y, Park K-N, Jeon I-C, Weon J-H. Lower extremity strength and the range of motion in relation to squat depth. J Hum Kinet. 2015;45:59–69. https://doi.org/10.1515/hukin-2015-0007.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Herman G, Nakdimon O, Levinger P, Springer S. The forward step-down test evaluation by a broad cohort clinician agreement. J Sport Rehabil. 2015;25:227. https://doi.org/10.1123/jsr.2014-0319.

    Article  PubMed  Google Scholar 

  148. Ioan-Sabin S, Marcel P. Testing agility skill at a basketball team (10-12 years old); 2015

    Google Scholar 

  149. Čuk I, Marinšek M. Landing quality in artistic gymnastics is related to landing symmetry. Biol Sport. 2013;30:29–33. https://doi.org/10.5604/20831862.1029818.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Christoforidou Α, Patikas DA, Bassa E, Paraschos I, Lazaridis S, Christoforidis C, et al. Landing from different heights: biomechanical and neuromuscular strategies in trained gymnasts and untrained prepubescent girls. J Electromyogr Kinesiol. 2017;32:1–8. https://doi.org/10.1016/j.jelekin.2016.11.003.

    Article  CAS  Google Scholar 

  151. Colclough A, Munro AG, Herrington LC, McMahon JJ, Comfort P. The effects of a four week jump-training program on frontal plane projection angle in female gymnasts. Phys Ther Sport. 2018;30:29–33. https://doi.org/10.1016/j.ptsp.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  152. Manske R, Reiman M. Functional performance testing for power and return to sports. Sports Health. 2013;5:244–50. https://doi.org/10.1177/1941738113479925.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla Ranieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranieri, M., Potter, M., Mascaro, M., Grant-Ford, M. (2020). Return to Play in Gymnastics. In: Sweeney, E. (eds) Gymnastics Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-26288-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26288-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26287-7

  • Online ISBN: 978-3-030-26288-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics