Skip to main content

OCT Angiography: Guidelines for Analysis and Interpretation

  • Chapter
  • First Online:
OCT and Imaging in Central Nervous System Diseases

Abstract

The recent introduction of optical coherence tomography angiography (OCTA) has remarkably expanded our knowledge of the ocular vasculature. Furthermore, this imaging modality has been widely-adopted to investigate different ocular and systemic diseases. In this chapter, a review of the salient anatomical features of the ocular vasculature is followed by a discussion of the fundamental principles of OCTA and the application of this imaging modality to study the retinal and choroidal vessels. A proper comprehension of this imaging modality is essential for the interpretation of OCTA imaging applications in neurological and optic nerve disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003.

    Article  PubMed  Google Scholar 

  2. Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 2018; https://doi.org/10.1016/j.preteyeres.2018.07.002.

  3. Kiel JW. The ocular circulation. Colloq Ser Integr Syst Physiol Mol Funct. 2011; https://doi.org/10.4199/C00024ED1V01Y201012ISP012.

  4. Tan PEZ, Yu PK, Balaratnasingam C, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina. Investig Ophthalmol Vis Sci. 2012; https://doi.org/10.1167/iovs.12-10017.

  5. Chan G, Balaratnasingam C, Yu PK, et al. Quantitative morphometry of perifoveal capillary networks in the human retina. Investig Ophthalmol Vis Sci. 2012; https://doi.org/10.1167/iovs.12-10265.

  6. Olver JM. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye. 1990;4(2):262–72. https://doi.org/10.1038/eye.1990.38.

    Article  PubMed  Google Scholar 

  7. De Stefano ME, Mugnaini E. Fine structure of the choroidal coat of the avian eye. Vascularization, supporting tissue and innervation. Anat Embryol (Berl). 1997;195(5):393–418. https://doi.org/10.1007/s004290050060.

    Article  Google Scholar 

  8. Spaide R, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2017; https://doi.org/10.1016/j.preteyeres.2017.11.003.

  9. Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR, et al. Br J Ophthalmol. 2016; https://doi.org/10.1136/bjophthalmol-2016-309104.

  10. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3381646&tool=pmcentrez&rendertype=abstract. Accessed 12 Mar 2016.

    Article  Google Scholar 

  11. Weinhaus RS, Burke JM, Delori FC, Snodderly DM. Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp Eye Res. 1995; https://doi.org/10.1016/S0014-4835(95)80053-0.

  12. Mames RN, Shady-McCoy L, Guy J. Central retinal and posterior ciliary artery occlusion after particle embolization of the external carotid artery system. Ophthalmology. 1991;98(4):527–31. https://doi.org/10.1016/S0161-6420(91)32261-9.

    Article  CAS  PubMed  Google Scholar 

  13. Ozawa G. Fundus fluorescein and indocyanine green angiography: a textbook and atlas, vol. 86. 2009. https://doi.org/10.1097/OPX.0b013e3181b31a29.

  14. Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR. Impact of multiple en face image averaging on quantitative assessment from optical coherence tomography angiography images. Ophthalmology. 2017; https://doi.org/10.1016/j.ophtha.2017.02.006.

  15. Uji A, Balasubramanian S, Lei J, et al. Multiple enface image averaging for enhanced optical coherence tomography angiography imaging. Acta Ophthalmol. 2018; https://doi.org/10.1111/aos.13740.

  16. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35(11):2163–80. https://doi.org/10.1097/IAE.0000000000000765.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Long AW, Zhang J, Granick S, Ferguson AL. Machine learning assembly landscapes from particle tracking data. Soft Matter. 2015;11(41):8141–53. https://doi.org/10.1039/C5SM01981H.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Hwang TS, Campbell JP, et al. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express. 2016;7(3):816. https://doi.org/10.1364/BOE.7.000816.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Povazay B, Bizheva K, Hermann B, et al. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Opt Express. 2003;11(17):1980–6. https://doi.org/10.1364/OE.11.001980.

    Article  CAS  PubMed  Google Scholar 

  20. Považay B, Hermann B, Unterhuber A, et al. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J Biomed Opt. 2007;12(4):041211. https://doi.org/10.1117/1.2773728.

    Article  PubMed  Google Scholar 

  21. Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W. In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. Opt Express. 2005;13(9):3252. https://doi.org/10.1364/OPEX.13.003252.

    Article  PubMed  Google Scholar 

  22. Choi W, Mohler KJ, Potsaid B, et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One. 2013;8(12):e81499. https://doi.org/10.1371/journal.pone.0081499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poddar R, Migacz JV, Schwartz DM, Werner JS, Gorczynska I. Challenges and advantages in widefield optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate. J Biomed Opt. 2017;20(10):1–14. https://doi.org/10.1117/1.JBO.22.10.106018.

    Article  Google Scholar 

  24. Maruko I, Kawano T, Arakawa H, Hasegawa T, Iida T. Visualizing large choroidal blood flow by subtraction of the choriocapillaris projection artifacts in swept source optical coherence tomography angiography in normal eyes. Sci Rep. 2018;8(1):15694. https://doi.org/10.1038/s41598-018-34102-6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Corvi F, Pellegrini M, Erba S, Cozzi M, Staurenghi G, Giani A. Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Am J Ophthalmol. 2018; https://doi.org/10.1016/j.ajo.2017.11.011.

  26. Rabiolo A, Gelormini F, Sacconi R, et al. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS One. 2018;13(10):e0205773. https://doi.org/10.1371/journal.pone.0205773.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Durbin MK, An L, Shemonski ND, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370. https://doi.org/10.1001/jamaophthalmol.2017.0080.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rabiolo A, Gelormini F, Marchese A, et al. Macular perfusion parameters in different angiocube sizes: does the size matter in quantitative optical coherence tomography angiography? Investig Ophthalmol Vis Sci. 2018; https://doi.org/10.1167/iovs.17-22359.

  29. Borrelli E, Balasubramanian S, Triolo G, Barboni P, Sadda SR, Sadun AA. Topographic macular microvascular changes and correlation with visual loss in chronic Leber hereditary optic neuropathy. Am J Ophthalmol. 2018;192:217–28. https://doi.org/10.1016/j.ajo.2018.05.029.

    Article  PubMed  Google Scholar 

  30. Zahid S, Dolz-Marco R, Freund KB, et al. Fractal dimensional analysis of optical coherence tomography angiography in eyes with diabetic retinopathy. Investig Ophthalmol Vis Sci. 2016; https://doi.org/10.1167/iovs.16-19656.

  31. Sacconi R, Borrelli E, Corbelli E, et al. Quantitative changes in the ageing choriocapillaris as measured by swept source optical coherence tomography angiography. Br J Ophthalmol. 2018; https://doi.org/10.1136/bjophthalmol-2018-313004.

  32. Nassisi M, Baghdasaryan E, Tepelus T, Asanad S, Borrelli E, Sadda SR. Topographic distribution of choriocapillaris flow deficits in healthy eyes. PLoS One. 2018;13(11):e0207638. https://doi.org/10.1371/journal.pone.0207638.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015; https://doi.org/10.1097/IAE.0000000000000635.

  34. Garrity ST, Paques M, Gaudric A, Freund KB, Sarraf D. Considerations in the understanding of venous outflow in the retinal capillary plexus. Retina. 2017; https://doi.org/10.1097/IAE.0000000000001784.

  35. Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017; https://doi.org/10.1038/srep42201.

  36. Nesper PL, Fawzi AA. Human parafoveal capillary vascular anatomy and connectivity revealed by optical coherence tomography angiography. Investig Ophthalmol Vis Sci. 2018; https://doi.org/10.1167/iovs.18-24710.

  37. Freund KB, Sarraf D, Leong BCS, Garrity ST, Vupparaboina KK, Dansingani KK. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex. JAMA Ophthalmol. 2018; https://doi.org/10.1001/jamaophthalmol.2018.3586.

  38. Muraoka Y, Uji A, Ishikura M, Iida Y, Ooto S, Tsujikawa A. Segmentation of the four-layered retinal vasculature using high-resolution optical coherence tomography angiography reveals the microcirculation unit. Invest Opthalmol Vis Sci. 2018;59(15):5847. https://doi.org/10.1167/iovs.18-25301.

    Article  Google Scholar 

  39. Hirano T, Chanwimol K, Weichsel J, Tepelus T, Sadda S. Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis. Sci Rep. 2018; https://doi.org/10.1038/s41598-018-27536-5.

  40. Carelli V, La Morgia C, Sadun AA. Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr Opin Neurol. 2013; https://doi.org/10.1097/WCO.0b013e32835c5f0b.

  41. Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. Br J Ophthalmol. 1967; https://doi.org/10.1136/bjo.51.2.115.

  42. Jia Y, Simonett JM, Wang J, et al. Wide-field OCT angiography investigation of the relationship between radial peripapillary capillary plexus density and nerve fiber layer thickness. Investig Ophthalmol Vis Sci. 2017; https://doi.org/10.1167/iovs.17-22593.

  43. Choi W, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology. 2015;122(12):2532–44. https://doi.org/10.1016/j.ophtha.2015.08.029.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spaide RF. Choriocapillaris signal voids in maternally inherited diabetes and deafness and in pseudoxanthoma elasticum. Retina. 2017;1 https://doi.org/10.1097/IAE.0000000000001497.

  45. Seddon JM, McLeod DS, Bhutto IA, et al. Histopathological insights into choroidal vascular loss in clinically documented cases of age-related macular degeneration. JAMA Ophthalmol. 2016; https://doi.org/10.1001/jamaophthalmol.2016.3519.

  46. Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR. Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol. 2017; https://doi.org/10.1001/jamaophthalmol.2017.3904.

  47. Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67. https://doi.org/10.1016/j.ajo.2016.07.023.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borrelli, E., Sadda, S.R., Uji, A., Querques, G. (2020). OCT Angiography: Guidelines for Analysis and Interpretation. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics