Skip to main content

OCT Technique: Past, Present and Future

  • Chapter
  • First Online:
OCT and Imaging in Central Nervous System Diseases

Abstract

Optical coherence tomography (OCT) has become the cornerstone technology in clinical and research imaging in the past two and half decades. OCT performs in vivo, real-time, noncontact scanning and provides cross-sectional and volumetric images with a resolution approaching that of histology. The technology has been used in various medical disciplines, but it is still most profoundly used in the field of ophthalmology where it was initially applied. OCT is continuously evolving with newly developed applications. This chapter will describe the basic principles of OCT techniques, its history, current status, major ophthalmic applications, and research that will determine the future of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AO:

Adaptive optics

CCD:

Charge-coupled device

EDI:

Enhanced depth imaging

FD:

Fourier domain

GCC:

Ganglion cell complex

ILM:

Internal limiting membrane

IPL:

Inner plexiform layer

IS:

Inner segment

LC:

Lamina cribrosa

OCT:

Optical coherence tomography

OCTA:

Optical coherence tomography angiography

ONH:

Optic nerve head

OS:

Outer segment

PS:

Polarization sensitive

RGC:

Retinal ganglion cell

RNFL:

Retinal nerve fiber layer

RPE:

Retinal pigment epithelium

SD:

Spectral domain

SS:

Swept source

TD:

Time-domain

Vis-OCT:

Visible light optical coherence tomography

References

  1. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1(9):970–2.

    Article  CAS  PubMed  Google Scholar 

  2. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–8.

    Article  CAS  PubMed  Google Scholar 

  3. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9.

    Article  CAS  PubMed  Google Scholar 

  4. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029–48.

    Article  CAS  PubMed  Google Scholar 

  5. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express. 2010;18(14):14685–704.

    Article  PubMed  Google Scholar 

  6. Kocaoglu OP, Cense B, Jonnal RS, Wang Q, Lee S, Gao W, et al. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vis Res. 2011;51(16):1835–44.

    Article  PubMed  Google Scholar 

  7. Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuroda HBM, Suzuki M, Yoneya S. A high speed three-dimensional spectral domain optical coherence tomography with <2 mc axial resolution using wide bandwidth femtosecond mode-locked laser. Appl Phys Lett. 2013;102(25):251102.

    Article  CAS  Google Scholar 

  9. Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W. In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. Opt Express. 2005;13(9):3252–8.

    Article  PubMed  Google Scholar 

  10. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2007;15(10):6121–39.

    Article  PubMed  Google Scholar 

  11. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt. 1973;12(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  12. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol. 1993;116(1):113–4.

    Article  CAS  PubMed  Google Scholar 

  13. Ahlers C, Schmidt-Erfurth U. Three-dimensional high resolution OCT imaging of macular pathology. Opt Express. 2009;17(5):4037–45.

    Article  CAS  PubMed  Google Scholar 

  14. Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93(8):1057–63.

    Article  CAS  PubMed  Google Scholar 

  15. Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, et al. In vivo ultrahigh-resolution optical coherence tomography. Opt Lett. 1999;24(17):1221–3.

    Article  CAS  PubMed  Google Scholar 

  16. Lim H, Jiang Y, Wang Y, Huang YC, Chen Z, Wise FW. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm. Opt Lett. 2005;30(10):1171–3.

    Article  PubMed  Google Scholar 

  17. Huber R, Adler DC, Fujimoto JG. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett. 2006;31(20):2975–7.

    Article  PubMed  Google Scholar 

  18. Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques. 2005;39(6 Suppl):S6–13.

    Article  PubMed  Google Scholar 

  19. Shu X, Beckmann L, Zhang H. Visible-light optical coherence tomography: a review. J Biomed Opt. 2017;22(12):1–14.

    PubMed  Google Scholar 

  20. Yi J, Wei Q, Liu W, Backman V, Zhang HF. Visible-light optical coherence tomography for retinal oximetry. Opt Lett. 2013;38(11):1796–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103(11):1889–98.

    Article  CAS  PubMed  Google Scholar 

  23. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  24. Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol. 1999;127(6):688–93.

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez-Tocino H, Alvarez-Vidal A, Maldonado MJ, Moreno-Montanes J, Garcia-Layana A. Retinal thickness study with optical coherence tomography in patients with diabetes. Invest Ophthalmol Vis Sci. 2002;43(5):1588–94.

    PubMed  Google Scholar 

  26. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004;122(6):827–37.

    Article  PubMed  Google Scholar 

  27. Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci. 2004;45(6):1716–24.

    Article  PubMed  Google Scholar 

  28. Kagemann L, Wollstein G, Wojtkowski M, Ishikawa H, Townsend KA, Gabriele ML, et al. Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography. J Biomed Opt. 2007;12(4):041212.

    Article  PubMed  Google Scholar 

  29. Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett. 2006;31(15):2308–10.

    Article  CAS  PubMed  Google Scholar 

  30. Yamanari M, Makita S, Lim Y, Yasuno Y. Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation. Opt Express. 2010;18(13):13964–80.

    Article  CAS  PubMed  Google Scholar 

  31. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005;112(10):1734–46.

    Article  PubMed  Google Scholar 

  32. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116(7):1257–63, 63e1–2.

    Google Scholar 

  33. Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. Arch Ophthalmol. 2011;129(9):1205–11.

    Article  PubMed  Google Scholar 

  34. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305–14 e1–2.

    Google Scholar 

  35. Tan O, Li G, Lu AT, Varma R, Huang D, Advanced Imaging for Glaucoma Study G. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115(6):949–56.

    Article  PubMed  Google Scholar 

  36. Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN, et al. Structural change can be detected in advanced-glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57(9):OCT511–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol. 2017;175:37–44.

    Article  PubMed  Google Scholar 

  38. Kim KE, Park KH, Jeoung JW, Kim SH, Kim DM. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol. 2014;92(8):e650–6.

    Article  PubMed  Google Scholar 

  39. Lavinsky F, Wu M, Schuman JS, Lucy KA, Liu M, Song Y, et al. Can macula and optic nerve head parameters detect glaucoma progression in eyes with advanced circumpapillary retinal nerve fiber layer damage? Ophthalmology. 2018;125(12):1907–12.

    Article  PubMed  Google Scholar 

  40. Keane PA, Ruiz-Garcia H, Sadda SR. Clinical applications of long-wavelength (1,000-nm) optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2011;42(Suppl):S67–74.

    Article  PubMed  Google Scholar 

  41. Yasin Alibhai A, Or C, Witkin AJ. Swept source optical coherence tomography: a review. Curr Ophthalmol Rep. 2018;6:7–16.

    Article  Google Scholar 

  42. Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, et al. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(13):8270–4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Omodaka K, Maekawa S, An G, Tsuda S, Shiga Y, Takada N, et al. Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography. PLoS One. 2018;13(11):e0207600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang B, Lucy KA, Schuman JS, Sigal IA, Bilonick RA, Lu C, et al. Tortuous pore path through the glaucomatous lamina cribrosa. Sci Rep. 2018;8(1):7281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC, et al. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol. 2019;199:120–32.

    Article  PubMed  Google Scholar 

  46. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. Doppler optical coherence tomography. Prog Retin Eye Res. 2014;41:26–43.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Werkmeister RM, Dragostinoff N, Pircher M, Gotzinger E, Hitzenberger CK, Leitgeb RA, et al. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt Lett. 2008;33(24):2967–9.

    Article  PubMed  Google Scholar 

  48. Wang Y, Fawzi AA, Varma R, Sadun AA, Zhang X, Tan O, et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci. 2011;52(2):840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14(11):2884–92.

    Article  CAS  PubMed  Google Scholar 

  50. Roorda A, Romero-Borja F, Donnelly Iii W, Queener H, Hebert T, Campbell M. Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2002;10(9):405–12.

    Article  PubMed  Google Scholar 

  51. Hermann B, Fernandez EJ, Unterhuber A, Sattmann H, Fercher AF, Drexler W, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett. 2004;29(18):2142–4.

    Article  CAS  PubMed  Google Scholar 

  52. Kocaoglu OP, Lee S, Jonnal RS, Wang Q, Herde AE, Derby JC, et al. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express. 2011;2(4):748–63.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Takayama K, Ooto S, Hangai M, Ueda-Arakawa N, Yoshida S, Akagi T, et al. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2013;155(5):870–81.

    Article  PubMed  Google Scholar 

  54. Burns SA, Tumbar R, Elsner AE, Ferguson D, Hammer DX. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J Opt Soc Am A Opt Image Sci Vis. 2007;24(5):1313–26.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zawadzki RJ, Choi SS, Fuller AR, Evans JW, Hamann B, Werner JS. Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. Opt Express. 2009;17(5):4084–94.

    Article  CAS  PubMed  Google Scholar 

  56. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Liu Z, Miller DT, Werner JS. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Invest Ophthalmol Vis Sci. 2016;57(9):OCT51–68.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gotzinger E, Pircher M, Baumann B, Ahlers C, Geitzenauer W, Schmidt-Erfurth U, et al. Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt Express. 2009;17(5):4151–65.

    Article  CAS  PubMed  Google Scholar 

  58. Cense B, Gao W, Brown JM, Jones SM, Jonnal RS, Mujat M, et al. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Opt Express. 2009;17(24):21634–51.

    Article  CAS  PubMed  Google Scholar 

  59. Liu S, Wang B, Yin B, Milner TE, Markey MK, McKinnon SJ, et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma. 2014;23(1):e45–52.

    Article  PubMed  Google Scholar 

  60. Michels S, Pircher M, Geitzenauer W, Simader C, Gotzinger E, Findl O, et al. Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. Br J Ophthalmol. 2008;92(2):204–9.

    Article  CAS  PubMed  Google Scholar 

  61. Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA. Spectral-domain phase microscopy. Opt Lett. 2005;30(10):1162–4.

    Article  PubMed  Google Scholar 

  62. Joo C, Akkin T, Cense B, Park BH, de Boer JF. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt Lett. 2005;30(16):2131–3.

    Article  PubMed  Google Scholar 

  63. Sarunic MV, Weinberg S, Izatt JA. Full-field swept-source phase microscopy. Opt Lett. 2006;31(10):1462–4.

    Article  PubMed  Google Scholar 

  64. Ju MJ, Hong YJ, Makita S, Lim Y, Kurokawa K, Duan L, et al. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. Opt Express. 2013;21(16):19412–36.

    Article  PubMed  Google Scholar 

  65. Cense B, Wang Q, Lee S, Zhao L, Elsner AE, Hitzenberger CK, et al. Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography. Biomed Opt Express. 2013;4(11):2296–306.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Braaf B, Vermeer KA, de Groot M, Vienola KV, de Boer JF. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. Biomed Opt Express. 2014;5(8):2736–58.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang Z, Lee HC, Ahsen OO, Lee B, Choi W, Potsaid B, et al. Depth-encoded all-fiber swept source polarization sensitive OCT. Biomed Opt Express. 2014;5(9):2931–49.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jiang H, Chen W, Delgado S, Liu Y, Lin Y, Wang J. Altered birefringence of peripapillary retinal nerve fiber layer in multiple sclerosis measured by polarization sensitive optical coherence tomography. Eye Vis (Lond). 2018;5:14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Schuman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostanyan, T., de los Angeles Ramos-Cadena, M., Wollstein, G., Schuman, J.S. (2020). OCT Technique: Past, Present and Future. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics