Skip to main content

Spondylolysis and Spondylolisthesis in Athletes

  • Chapter
  • First Online:
Spinal Conditions in the Athlete

Abstract

Lumbar spondylolysis is the most common pathology identified in adolescents with chronic back pain. A key component to the diagnosis and treatment of lumbar spondylolysis in our practice relies on CT stage classification. It is predictive of fracture union and yields important information about the pain mechanism. This in turn drives treatment. Early defects are best found on MRI with assessment for edema in the adjacent pars. Slippage is the long-term sequela to be avoided. Evidence has shown that the immature spine is more prone to slippage, and therefore routine surveillance is required. Before return to play, the athlete must complete a comprehensive rehabilitation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sairyo K, Katoh S, Sakamaki T, Komatsubara S, Endo K, Yasui N. Three successive stress fractures at the same vertebral level in an adolescent baseball player. Am J Sports Med. 2003;31(4):606–10.

    Article  Google Scholar 

  2. Sairyo K, Katoh S, Sasa T, Yasui N, Goel VK, Vadapalli S, et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contra-lateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med. 2005;33(4):583–90.

    Article  Google Scholar 

  3. Sairyo K, Katoh S, Takata Y, Terai T, Yasui N, Goel VK, et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents. A clinical and biomechanical study. Spine. 2006;31:206–11.

    Article  Google Scholar 

  4. Wiltse LL, Widell EH Jr, Jackson DW. Fatigue fracture: the basic lesion in isthmic spondylolisthesis. J Bone Joint Surg Am. 1975;57(1):17–22.

    Article  CAS  Google Scholar 

  5. Yamada A, Sairyo K, Shibuya I, Kato K, Dezawa A, Sakai T. Lumbar spondylolysis in juveniles from the same family: a report of three cases and a review of the literature. Case Rep Orthop. 2013;2013:272514.

    PubMed  PubMed Central  Google Scholar 

  6. Haukipuro K, Keränen N, Koivisto E, et al. Familial occurrence of lumbar spondylolysis and spondylolisthesis. Clin Genet. 1978;13(6):471–6.

    Article  CAS  Google Scholar 

  7. Cai T, Yang L, Cai W, Guo S, Yu P, Li J, et al. Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Proc Natl Acad Sci U S A. 2015;112(26):8064–9.

    Article  CAS  Google Scholar 

  8. Sairyo K, Sakai T, Yasui N. Conservative treatment of lumbar spondylolysis in childhood and adolescence: the radiological signs which predict healing. J Bone Joint Surg (Br). 2009;91-B:206–9.

    Article  Google Scholar 

  9. Sairyo K, Sakai T, Yasui N, Dezawa A. Conservative treatment for pediatric lumbar spondylolysis to achieve bone healing using a hard brace: what type and how long? J Neurosurg Spine. 2012;16(6):610–4.

    Article  Google Scholar 

  10. Terai T, Sairyo K, Goel VK, Ebraheim N, Biyani A, Sakai T, Yasui N. Stress fracture as the beginning of spondylolysis occurs from the ventral aspect of pars interarticularis. A clinical and biomechanical study. J Bone Joint Surg Br. 2010;92(8):1123–7.

    Article  CAS  Google Scholar 

  11. Sairyo K, Sakai T, Amari R, Yasui N. Causes of radiculopathy in young athletes with spondylolysis. Am J Sports Med. 2010;38(2):357–62.

    Article  Google Scholar 

  12. Yamashita K, Sakai T, Takata Y, Hayashi F, Tezuka F, Morimoto M, et al. Utility of STIR-MRI in detecting the pain generator in asymmetric bilateral pars fracture: a report of 5 cases. Neurol Med Chir (Tokyo). 2018;58(2):91–5.

    Article  Google Scholar 

  13. Sairyo K, Sakai T, Mase Y, Kon T, Shibuya I, Kanamori Y, et al. Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study. Arch Orthop Trauma Surg. 2011;131(11):1485–9.

    Article  Google Scholar 

  14. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg Am. 1984;66(5):699–707.

    Article  CAS  Google Scholar 

  15. Seitsalo S, Osterman K, Hyvãrinen H, Tallroth K, Schlenzka D, Poussa M. Progression of spondylolisthesis in children and adolescents. A long-term follow-up of 272 patients. Spine (Phila Pa 1976). 1991;16(4):417–21.

    Article  CAS  Google Scholar 

  16. Sairyo K, Katoh S, Ikata T, Fujii K, Kajiura K, Goel VK. Development of spondylolytic olisthesis in adolescents. Spine J. 2001;1(3):171–5.

    Article  CAS  Google Scholar 

  17. Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S. The pathomechanism of isthmic lumbar spondylolisthesis. A biomechanical study in immature calf spines. Spine (Phila Pa 1976). 1998;23(13):1442–6.

    Article  CAS  Google Scholar 

  18. Kajiura K, Katoh S, Sairyo K, Ikata T, Goel VK, Murakami RI. Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine (Phila Pa 1976). 2001;26(20):2208–12; discussion 2212–3.

    Article  CAS  Google Scholar 

  19. Sakamaki T, Sairyo K, Katoh S, Endo H, Komatsubara S, Sano T, Yasui N. The pathogenesis of slippage and deformity in the pediatric lumbar spine: a radiographic and histologic study using a new rat in vivo model. Spine (Phila Pa 1976). 2003;28(7):645–50; discussion 650–1.

    Google Scholar 

  20. Sairyo K, Katoh S, Sakamaki T, Inoue M, Komatsubara S, Ogawa T, et al. Vertebral forward slippage in immature lumbar spine occurs following epiphyseal separation and its occurrence is unrelated to disc degeneration: is the pediatric spondylolisthesis a physis stress fracture of vertebral body? Spine (Phila Pa 1976). 2004;29(5):524–7.

    Article  Google Scholar 

  21. Tezuka F, Sairyo K, Sakai T, Dezawa A. Etiology of adult-onset stress fracture in the lumbar spine. Clin Spine Surg. 2017;30(3):E233–8.

    Article  Google Scholar 

  22. Sakai T, Tezuka F, Yamashita K, Takata Y, Higashino K, Nagamachi A, Sairyo K. Conservative treatment for bony healing in pediatric lumbar spondylolysis. Spine (Phila Pa 1976). 2017;42(12):E716–20.

    Article  Google Scholar 

  23. Cook G. Movement: functional movement system. Aptos: Target Publications; 2010.

    Google Scholar 

  24. Sairyo K, Kawamura T, Mase Y, Hada Y, Sakai T, et al. Jack-knife stretching promotes flexibility of tight hamstrings after 4 weeks: a pilot study. Eur J Orthop Surg Traumatol. 2013;23(6):657–63.

    Article  Google Scholar 

  25. Okubo Y, Kaneoka K, Imai A, Shiina I, Tatsumura M, Izumi S, Miyakawa S. Electromyographic analysis of transversus abdominis and lumbar multifidus using wire electrodes during lumbar stabilization exercises. J Orthop Sports Phys Ther. 2010;40(11):743–50.

    Article  Google Scholar 

  26. Overley SC, McAnany SJ, Andelman S, Kim J, Merrill RK, Cho SK, et al. Return to play in adolescent athletes with symptomatic spondylolysis without listhesis: a meta-analysis. Global Spine J. 2018;8(2):190–7.

    Article  Google Scholar 

  27. Nicol RO, Scott JH. Lytic spondylolysis. Repair by wiring. Spine (Phila Pa 1976). 1986;11:1027–30.

    Article  CAS  Google Scholar 

  28. Buck JE. Direct repair of the defect in spondylolisthesis. Preliminary report. J Bone Joint Surg Br. 1970;52:432–7.

    Article  CAS  Google Scholar 

  29. Tokuhashi Y, Matsuzaki H. Repair of defects in spondylolysis by segmental pedicle screw hook fixation. Spine. 1996;21:2041–5.

    Article  CAS  Google Scholar 

  30. Sairyo K, Sakai T, Yasui N. Minimally invasive technique for direct repair of pars interarticularis defects in adults using a percutaneous pedicle screw and hook-rod system. J Neurosurg Spine. 2009;10(5):492–5.

    Article  Google Scholar 

  31. Gillet P, Petit M. Direct repair of spondylolysis without spondylolisthesis, using a rod-screw construct and bone grafting of the pars defect. Spine. 1999;24:1252–6.

    Article  CAS  Google Scholar 

  32. Yamashita K, Higashino K, Sakai T, Takata Y, Hayashi F, Tezuka F, et al. The reduction and direct repair of isthmic spondylolisthesis using the smiley face rod method in adolescent athlete: technical note. J Med Investig. 2017;64(1.2):168–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sairyo, K., Sakai, T., Takata, Y., Yamashita, K., Tezuka, F., Manabe, H. (2020). Spondylolysis and Spondylolisthesis in Athletes. In: Hsu, W., Jenkins, T. (eds) Spinal Conditions in the Athlete. Springer, Cham. https://doi.org/10.1007/978-3-030-26207-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26207-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26206-8

  • Online ISBN: 978-3-030-26207-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics