Skip to main content

The Paleoecological Impact of Grazing and Browsing: Consequences of the Late Quaternary Large Herbivore Extinctions

  • Chapter
  • First Online:
The Ecology of Browsing and Grazing II

Part of the book series: Ecological Studies ((ECOLSTUD,volume 239))

Abstract

As recently as ~50,000 years ago, a great diversity of large-bodied mammalian herbivores (species >44 kg) occupied nearly all of Earth’s terrestrial realms. Outside of sub-Saharan Africa, the vast majority of these species had disappeared by the Pleistocene-Holocene boundary ~11,700 years ago, either from human impacts, climate change, or some combination of both. Though research has focused on the causes of the late Quaternary extinctions since the nineteenth century, only recently has attention shifted to understanding their downstream consequences for the structure and functioning of terrestrial ecosystems. In this Chapter, we synthesize the available paleoecological datasets bearing on late Quaternary extinctions and corresponding ecosystem change in Australia, North America, and northern Eurasia. We show that across these regions, the disappearance of large herbivorous mammals had far-reaching impacts, including enhanced fire regimes and vegetation state shifts, reductions in seed dispersal and near-extinction of large fruiting plants, downsizing and diversity loss in invertebrate communities relying on herbivore dung, and the collapse of predator guilds relying on large mammal prey. Collectively, these late Quaternary paleoecological lessons emphasize that large herbivores are cornerstones of ecosystems and play major roles in both maintaining stability and driving state shifts. We conclude our Chapter by discussing how these lessons feed into conservation biology today and efforts to mitigate the effects of continued range contraction and extinction of large mammals over the next century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen JR, Hickler T, Singarayer JS et al (2010) Last glacial vegetation of northern Eurasia. Quat Sci Rev 29:2604–2618

    Article  Google Scholar 

  • Alroy J (1999) Putting North America’s end-Pleistocene megafaunal extinction in context. In: MacPhee RDE, Sues HD (eds) Extinctions in near time. Springer, Boston, pp 105–143

    Chapter  Google Scholar 

  • Baker AG, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat Sci Rev 62:21–31

    Article  Google Scholar 

  • Barnosky AD (2008) Megafauna biomass tradeoff as a driver of quaternary and future extinctions. Proc Natl Acad Sci USA 105:11543–11548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS et al (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306:70–75

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Boulanger MT, Lyman RL (2014) Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat Sci Rev 85:35–46

    Article  Google Scholar 

  • Broughton JM, Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat Commun 9:5441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bunney K, Bond WJ, Henley M (2017) Seed dispersal kernel of the largest surviving megaherbivore—the African savanna elephant. Biotropica 49:395–401

    Article  Google Scholar 

  • Burney DA, Flannery TF (2005) Fifty millennia of catastrophic extinctions after human contact. Trends Ecol Evol 20:395–401

    Article  PubMed  Google Scholar 

  • Cardillo M, Mace GM, Jones KE et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    Article  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Scholtz CH, Klok CJ et al (1995) Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct Ecol 9:30–39

    Article  Google Scholar 

  • Coltrain JB, Harris JM, Cerling TE (2004) Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeogr Palaeoclimatol Palaeoecol 205:199–219

    Article  Google Scholar 

  • Corlett RT (2013) The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol Conserv 163:13–21

    Article  Google Scholar 

  • Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat Res 28:290–294

    Article  Google Scholar 

  • Davis M, Faurby S, Svenning JC (2018) Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc Natl Acad Sci USA 115:11262–11267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis LR, Field JH, Wroe S et al (2017) Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology 43:181–195

    Article  Google Scholar 

  • Estes R (2014) The Gnu’s world: Serengeti wildebeest ecology and life history. University of California Press, Berkeley

    Google Scholar 

  • Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet earth. Science 333:301–306

    Article  CAS  PubMed  Google Scholar 

  • Faith JT, Surovell TA (2009) Synchronous extinction of North America’s Pleistocene mammals. Proc Natl Acad Sci USA 106:20641–20645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faith JT, Rowan J, Du A, Koch PL (2018) Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362:938–941

    Article  CAS  PubMed  Google Scholar 

  • Faurby S, Svenning JC (2015) Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers Distrib 21:1155–1166

    Article  Google Scholar 

  • Faurby S, Davis M, Pedersen RØ et al (2018) PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99:2626–2626

    Article  PubMed  Google Scholar 

  • Feranec RS, Miller NG, Lothrop JC et al (2011) The Sporormiella proxy and end-Pleistocene megafaunal extinction: a perspective. Quat Int 245:333–338

    Article  Google Scholar 

  • Galetti M, Moleón M, Jordano P et al (2018) Ecological and evolutionary legacy of megafauna extinctions. Biol Rev 93:845–862

    Article  PubMed  Google Scholar 

  • Gill JL (2014) Ecological impact of late Quaternary megaherbivore extinctions. New Phytol 201:1163–1169

    Article  PubMed  Google Scholar 

  • Gill JL, Williams JW, Jackson ST et al (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Gill JL, Williams JW, Jackson ST et al (2012) Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat Sci Rev 34:66–80

    Article  Google Scholar 

  • Gill JL, McLauchlan KK, Skibbe AM et al (2013) Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in paleorecords. J Ecol 101:1125–1136

    Article  Google Scholar 

  • Gillespie R, Brook BW (2006) Is there a Pleistocene archaeological site at Cuddie Springs? Archaeol Ocean 41:1–11

    Article  Google Scholar 

  • Gillespie R, Brook BW, Baynes A (2006) Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa 30:163–186

    Article  Google Scholar 

  • González-Guarda E, Petermann-Pichincura A, Tornero C et al (2018) Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proc Natl Acad Sci USA 115:9258–9263. https://doi.org/10.1073/pnas.1804642115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson DK, Meltzer DJ (2015) Revisiting Paleoindian exploitation of extinct North American mammals. J Archaeol Sci 56:177–193

    Article  Google Scholar 

  • Gunter NL, Weir TA, Slipinksi A et al (2016) If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS One 11:e0153570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guthrie RD (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat Sci Rev 20:549–574

    Article  Google Scholar 

  • Halligan JJ, Waters MR, Perrotti A, Owens IJ, Feinberg JM, Bourne MD, Fenerty B, Winsborough B, Carlson D, Fisher DC, Stafford TW, Dunbar JS (2016) Pre-Clovis occupation 14,550 years ago at the Page-Ladson site, Florida, and the peopling of the Americas. Sci Adv 2:e1600375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helgen KM, Wells RT, Kear BP et al (2006) Ecological and evolutionary significance of sizes of giant extinct kangaroos. Aust J Zool 54:293–303

    Article  Google Scholar 

  • Hempson GP, Archibald S, Bond WJ (2015) A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350:1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Holliday VT, Surovell T, Meltzer DJ et al (2014) The Younger Dryas impact hypothesis: a cosmic catastrophe. J Quat Sci 29:515–530

    Article  Google Scholar 

  • Janzen DH, Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN (2002) Determinants of loss of mammal species during the late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc R Soc B 269:2221–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CN (2009) Ecological consequences of Late Quaternary extinctions of megafauna. Proc R Soc B 276:2509–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CN, Rule S, Haberle SG et al (2015) Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions. Quat Sci Rev 110:107–113

    Article  Google Scholar 

  • Johnson CN, Rule S, Haberle SG et al (2016) Geographic variation in the ecological effects of extinction of Australia’s Pleistocene megafauna. Ecography 39:109–116

    Article  Google Scholar 

  • Kershaw AP, McKenzie GM, Porch N et al (2007) A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, southeastern highlands of Australia. J Quat Sci 22:481–500

    Article  Google Scholar 

  • Kistler L, Newsom LA, Ryan TM et al (2015) Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc Natl Acad Sci USA 112:15107–15112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. Annual Rev Ecol Evol Syst 37:215–250

    Article  Google Scholar 

  • Koch PL, Hoppe KA, Webb SD (1998) The isotopic ecology of late Pleistocene mammals in North America: part 1 Florida. Chem Geol 152:119–138

    Article  CAS  Google Scholar 

  • Kryger U, Cole KS, Tukker R et al (2006) Biology and ecology of Circellium bacchus (Fabricius 1781) (Coleoptera Scarabaeidae), a South African dung beetle of conservation concern. Trop Zool 19:185–207

    Google Scholar 

  • Long JA, Archer M, Flannery T et al (2002) Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Lundgren EJ, Ramp D, Ripple WJ et al (2018) Introduced megafauna are rewilding the Anthropocene. Ecography 41:857–866

    Article  Google Scholar 

  • Lyons SK, Smith FA, Brown JH (2004a) Of mice, mastodons and men: human-mediated extinctions on four continents. Evol Ecol Res 6:339–358

    Google Scholar 

  • Lyons SK, Smith FA, Wagner PJ et al (2004b) Was a ‘hyperdisease’ responsible for the late Pleistocene megafaunal extinction? Ecol Lett 7:859–868

    Article  Google Scholar 

  • Malhi Y, Doughty CE, Galetti M et al (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc Natl Acad Sci USA 113:838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marean CW, Ehrhardt CL (1995) Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth’s den. J Hum Evol 29:515–547

    Article  Google Scholar 

  • Martin PS (1967) Prehistoric overkill. In: Martin PS, Wright HEJ (eds) Pleistocene extinctions: the search for a cause. Yale University Press, New Haven, pp 75–120

    Google Scholar 

  • Martin PS (1984) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson, pp 354–403

    Google Scholar 

  • Martin PS (2005) Twilight of the mammoths: ice age extinctions and the rewilding of North America. University of California Press, Berkeley

    Google Scholar 

  • Martin PS, Steadman DW (1999) Prehistoric extinctions on islands and continents. In: MacPhee RDE, Sues HD (eds) Extinctions in near time. Springer, Boston, pp 17–52

    Chapter  Google Scholar 

  • Meltzer DJ (2015) Pleistocene overkill and North American mammalian extinctions. Ann Rev Anth 44:33–53

    Article  Google Scholar 

  • Menkhorst P, Knight F (2011) A field guide to the mammals of Australia. Oxford University Press, Oxford

    Google Scholar 

  • Nagaoka L, Rick T, Wolverton S (2018) The overkill model and its impact on environmental research. Ecol Evol 8:9683–9696

    Article  PubMed  PubMed Central  Google Scholar 

  • Newsom LA, Mihlbachler MC (2006) Mastodons (Mammut americanum) diet foraging patterns based on analysis of dung deposits. In: First Floridians and Last Mastodons: the Page-Ladson site in the Aucilla River. Springer, Dordrecht, pp 263–331

    Chapter  Google Scholar 

  • Olff H, Ritchie ME, Prins HH (2002) Global environmental controls of diversity in large herbivores. Nature 415:901

    Article  CAS  PubMed  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pinter N, Scott AC, Daulton TL et al (2011) The Younger Dryas impact hypothesis: a requiem. Earth Sci Rev 106:247–264

    Article  Google Scholar 

  • Pires MM, Guimarães PR, Galetti M et al (2018) Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41:153–163

    Article  Google Scholar 

  • Price GJ, Ferguson KJ, Webb GE et al (2017) Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia–New Guinea). Proc R Soc B 284:20170785

    Article  PubMed  PubMed Central  Google Scholar 

  • Prideaux GJ, Ayliffe LK, DeSantis LR et al (2009) Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc Nat Acad Sci 106:11646–11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins HHT (1998) The origins of grassland communities in northwestern Europe. In: Wallis de Vries MF, Bakker JP, van Wieren SE (eds) Grazing and conservation management. Kluwer Academic Publishers, Boston, pp 55–105

    Chapter  Google Scholar 

  • Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484

    Article  PubMed  CAS  Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C et al (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivals F, Solounias N, Mihlbachler MC (2007) Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quat Res 68:338–346

    Article  Google Scholar 

  • Roberts RG, Flannery TF, Ayliffe LK et al (2001) New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292:1888–1892

    Article  CAS  PubMed  Google Scholar 

  • Robinson GS, Pigott Burney L, Burney DA (2005) Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol Monogr 75:295–315

    Article  Google Scholar 

  • Rule S, Brook BW, Haberle SG et al (2012) The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Sandom C, Faurby S, Sandel B et al (2014) Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B 281:20133254

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandom CJ, Ejrnæs R, Hansen MD et al (2015) High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc Natl Acad Sci USA 111:4162–4167

    Article  CAS  Google Scholar 

  • Schweiger AH, Svenning JC (2018) Down-sizing of dung beetle assemblages over the last 53 000 years is consistent with a dominant effect of megafauna losses. Oikos 127:1–8

    Article  Google Scholar 

  • Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator–prey system. Nature 425:288

    Article  CAS  PubMed  Google Scholar 

  • Smith FA, Lyons SK, Ernest SM et al (2003) Body mass of late Quaternary mammals. Ecology 84:3403–3403

    Article  Google Scholar 

  • Smith FA, Doughty CE, Malhi Y et al (2016) Megafauna in the earth system. Ecography 39:99–108

    Article  Google Scholar 

  • Smith FA, Smith REE, Lyons SK et al (2018) Body size downgrading of mammals over the late Quaternary. Science 360:310–313

    Article  CAS  PubMed  Google Scholar 

  • Stuart AJ (1982) The occurrence of Hippopotamus in the British Pleistocene. Quartärpaläontologie 6:209–218

    Google Scholar 

  • Stuart AJ (2015) Late quaternary megafaunal extinctions on the continents: a short review. Geol J 50:338–363

    Article  Google Scholar 

  • Stuart AJ, Lister AM (2011) Extinction chronology of the cave lion Panthera spelaea. Quat Sci Rev 30:2329–2340

    Article  Google Scholar 

  • Svenning JC, Pedersen PB, Donlan CJ et al (2016) Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc Natl Acad Sci USA 113:898–906

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson KW, van Langevelde F, Ward D, Prins HH, de Bie S, Vosman B, Sampaio EVSB, Sterck FJ (2016) Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species. Oikos 125:126–136

    Article  CAS  Google Scholar 

  • Van Der Kaars S, Miller GH, Turney CS et al (2017) Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat Commun 8:14142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Valkenburgh B, Hayward MW, Ripple WJ et al (2016) The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc Natl Acad Sci USA 113:862–867

    Article  PubMed  CAS  Google Scholar 

  • Waldram MS, Bond WJ, Stock WD (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11:101–112

    Article  Google Scholar 

  • Wallach AD, Lundgren EJ, Ripple WJ et al (2018) Invisible megafauna. Conserv Biol 32:1–4

    Article  Google Scholar 

  • Weber L (2013) Plants that miss the megafauna. Wildl Aust 50:22

    Google Scholar 

  • Wilson DE, Reeder DM (eds) (2005) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Woodman N, Athfield NB (2009) Post-Clovis survival of American mastodon in the southern Great Lakes region of North America. Quat Res 72:359–363

    Article  CAS  Google Scholar 

  • Wroe S, Crowther M, Dortch J et al (2004) The size of the largest marsupial and why it matters. Proc R Soc B 271:S34–S36

    PubMed  PubMed Central  Google Scholar 

  • Wroe S, Field JH, Archer M et al (2013) Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc Natl Acad Sci USA 110:8777–8781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeakel JD, Guimarães PR, Bocherens H et al (2013) The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc R Soc B 280:20130239

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimov SA (2005) Pleistocene park: return of the mammoth’s ecosystem. Science 308:796–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to editors I. Gordon and H. Prins for inviting us to contribute a chapter on the paleoecological impacts of browsing and grazing, and for their careful editing of this chapter. We acknowledge the contributions of Søren Faurby and colleagues and the PHYLACINE dataset, which we heavily relied upon in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Rowan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowan, J., Faith, J.T. (2019). The Paleoecological Impact of Grazing and Browsing: Consequences of the Late Quaternary Large Herbivore Extinctions. In: Gordon, I., Prins, H. (eds) The Ecology of Browsing and Grazing II. Ecological Studies, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-25865-8_3

Download citation

Publish with us

Policies and ethics