Skip to main content

Browsers and Grazers Drive the Dynamics of Ecosystems

  • Chapter
  • First Online:
The Ecology of Browsing and Grazing II

Part of the book series: Ecological Studies ((ECOLSTUD,volume 239))

Abstract

Large mammalian herbivores and the ecosystems in which they live are intimately connected through the food choices the animals make. Herbivores eat plants and plants have evolved mechanisms to defend themselves from being eaten. This arms race between plants and vertebrate herbivores continues to this day. The outcomes of this arms race are seen in the morphological, physiological and behavioural adaptations of large mammalian herbivores. The ways in which herbivores exploit plants affect not only plants, and the assemblages in which they exist but also the “dynamics” of whole ecosystems. The paleoecological work demonstrates that the consequences of large herbivore community and population dynamics at some point in history ripples through time and can be seen in the dynamics of ecosystems today. The Quaternary extinctions of many species of large mammalian herbivores changed systems as fire became the major consumer of vegetation in the absence of ungulates. Fundamental to the understanding of the role of herbivores in ecosystem dynamics is the concept of “niche”, however, “browsing” and “grazing” species of large mammalian herbivore are extremely flexible in their diet composition depending on the circumstances in which they find themselves. Whilst body size has also been used as an explanatory variable in understanding large mammalian herbivore ecology (including feeding and vital rates in population studies), there are many “exceptions to the rule”, which, as with the browser vs. grazer dichotomy, deserves further investigation and potentially also changes in ecological theory. There are rich seams of information and data from historical studies and literature that should be made freely available for such analyses, much more often than is presently the norm. Whilst ungulate ecologists should look to the literature on livestock for insights into, particularly digestive physiology and the increasing understanding of the important of the fermentation microbiome, studies on the various species of wild large mammalian herbivore (including those that are not foregut or hindgut fermenters) are needed to provide insights into dietary adaptations. So, what of the future? Climate change looms large in the picture for large mammalian herbivores; they may have flexibility in order to cope with variation but movement, to take advantage of nutritional opportunities, is key, and populations in, for example, semi-arid areas are increasingly unable to exploit spatial variation because of the massive impact of humans on land use. Let us not forget that currently about 37% of the total land area of the globe is agricultural land and 60% of this is grazing land for livestock. These proportions will only increase as the world’s human population grows in size and wealth. The foregoing Chapters in the Ecology of Browsing and Grazing II provide a wealth of information on the past and current ecology of large mammalian herbivores, but the book is also a call for future generations of researchers to seek to better understand the whats, whys and the wherefores of the interactions between herbivores and the ecosystems in which they live. Given the vital importance of mammalian herbivores to those ecosystems, and also the role they play in providing ecosystem services to humanity, researchers must seek partnership with policy and management practitioners in delivering evidence-based solutions for the future management and conservation of these amazing creatures, in a world that is changing before our eyes. But researchers should not forget that these ungulates are made of flesh and blood, that they graze and browse in real landscapes, and that there is a profound need for hard-core ungulate ecologists with a broad set of skills and deep understanding of ‘their’ animals. As a bonus, we, and all other ungulate ecologists, get to see, feel and understand some of the most beautiful creatures that share our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrestani FS, Heitkönig IMA, Matsubayashi H, Prins HHT (2016) Grazing and browsing by large herbivores in South and Southeast Asia. In: Ahrestani FS, Sankaran M (eds) The ecology of large herbivores in South and Southeast Asia. Springer, Dordrecht, pp 99–120

    Chapter  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Food and Agriculture Organization, Rome, Italy

    Google Scholar 

  • Alroy J (1999) Putting North America’s end-Pleistocene megafaunal extinction in context. In: MacPhee RDE, Sues HD (eds) Extinctions in near time. Springer, Boston, MA, pp 105–143

    Chapter  Google Scholar 

  • Arnold W, Beiglböck C, Burmester M, Guschlbauer M, Lengauer A, Schröder B, Wilkens MR, Breves G (2015) Contrary seasonal changes of rates of nutrient uptake, organ mass, and voluntary food intake in red deer (Cervus elaphus). Am J Phys Heart Circ Phys 309:R277–R285

    CAS  Google Scholar 

  • Barbero M, Bonin G, Loisel R, Quézel P (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87:151–173

    Article  Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS et al (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75

    Article  CAS  PubMed  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci 115:6506–6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmont Forum (2019) http://www.belmontforum.org/

  • Biggs R, Schlüter M, Schoon ML (2015) Principles for building resilience: sustaining ecosystem services in social-ecological systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bond WJ, Scott AC (2010) Fire and the spread of flowering plants in the Cretaceous. New Phytol 188:1137–1150

    Article  PubMed  Google Scholar 

  • Bond WJ, Dickinson KJ, Mark AF (2004) What limits the spread of fire-dependent vegetation? Evidence from geographic variation of serotiny in a New Zealand shrub. Glob Ecol Biogeogr 13(2):115–127

    Article  Google Scholar 

  • Bonin M, Tremblay JP, Côté SD (2016) Contributions of digestive plasticity to the ability of white-tailed deer to cope with a low-quality diet. J Mammal 97:1406–1413

    Article  Google Scholar 

  • Bowyer RT, Bleich VC, Stewart KM, Whiting JC, Monteith KL (2014) Density dependence in ungulates: a review of causes, and concepts with some clarifications. Calif Fish Game 100:550–572

    Google Scholar 

  • Boyce MS (2000) Modeling predator-prey dynamics. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology - controversies and consequences. Columbia University Press, New York, pp 253–287

    Google Scholar 

  • Boyce MS, Haridas CV, Lee CT, the NCEAS Stochastic Demography Working Group (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Article  PubMed  Google Scholar 

  • Brown JR, Carter J (1998) Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland. Landsc Ecol 13:93–102

    Article  Google Scholar 

  • Bruinsma J (ed) (2003) World agriculture: towards 2015/2030. An FAO Perspective. Food and Agriculture Organization/Earthscan Publications, Rome/London

    Google Scholar 

  • Byers JA (1997) American pronghorn: social adaptations and the ghosts of predators past. University of Chicago Press, Chicago

    Google Scholar 

  • Cambridge Dictionary (2019) https://dictionary.cambridge.org/dictionary/english/interdisciplinary

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds OR, Sechrest W, Orme CD, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Caughley G, Krebs CJ (1983) Are big mammals simply little mammals writ large? Oecologia 59:7–17

    Article  CAS  PubMed  Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Cerling TE, Andanje SA, Blumenthal SA, Brown FH, Chritz KL, Harris JM, Hart JA, Kirera FM, Kaleme P, Leakey LN, Leakey MG (2015) Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc Natl Acad Sci 112:11467–11472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitty D (1996) Do lemmings commit suicide? Beautiful hypotheses and ugly facts. Oxford University Press, New York

    Google Scholar 

  • Clauss M, Kaiser TM, Hummel J (2008) The morphophysiological adaptations of browsing and grazing mammals. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Heidelberg, pp 149–178

    Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284

    Article  Google Scholar 

  • Clutton–Brock TH, Coulson T (2002) Comparative ungulate dynamics: the devil is in the detail. Philos Trans R Soc London B: Biol Sci 357:1285–1298

    Article  Google Scholar 

  • Codron D, Clauss M (2010) Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Can J Zool 88:1129–1138

    Article  Google Scholar 

  • Dallimer D, Gordon IJ, Martin-Ortega J, Paavola J, Afionis S, Rendon O, Bark R (in review) The insurance value of ecosystems: taking stock of what we know so far. Ecol Econ

    Google Scholar 

  • Dalquest W (1978) Phylogeny of American horses of Blancan and Pleistocene age. Ann Zool Fenn 15:191–199

    Google Scholar 

  • Damuth J, Janis CM (2011) On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev 86:733–758

    Article  PubMed  Google Scholar 

  • Davis NE, Bennett A, Forsyth DM, Bowman DM, Lefroy EC, Wood SW, Woolnough AP, West P, Hampton JO, Johnson CN (2016) A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia. Wildl Res 43:515–532

    Article  Google Scholar 

  • Delgado C, Rosegrant M, Steinfeld H, Ehui S, Courbois C (1999) Livestock to 2020: the next food revolution. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672

    Article  Google Scholar 

  • Drescher M, Heitkönig IMA, Raats JG, Prins HHT (2006) The role of grass stems as structural foraging deterrents and their effects on the foraging behaviour of cattle. Appl Anim Behav Sci 101:10–26

    Article  Google Scholar 

  • du Toit JT, Olff H (2014) Generalities in grazing and browsing ecology: using across-guild comparisons to control contingencies. Oecologia 174:1075–1083

    Article  PubMed  Google Scholar 

  • du Toit JT, Rogers KH, Biggs HC (eds) (2013) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, New York

    Google Scholar 

  • Duncan P, Foose TJ, Gordon IJ, Gakahu CG, Lloyd M (1990) Comparative nutrient extraction from forages by grazing bovids and equids: a test of the nutritional model of equid/bovid competition and coexistence. Oecologia 84:411–418

    Article  PubMed  Google Scholar 

  • Eisenmann V, Kuznetsova T (2004) Early Pleistocene equids (Mammalia, Perissodactyla) of Nalaikha, Mongolia, and the emergence of modern Equus Linnaeus, 1758. Geodiversitas 26(3):535–561

    Google Scholar 

  • Elton CS (1962) The first 30 years of the Bureau of Animal Population. In the Elton Archive (transcribed & edited by C.M. Pond 2014). https://ora.ox.ac.uk/objects/uuid:89c5e479-6003-45ba-bd78-8a8a12858bf1/download_file?file_format=pdf&safe_filename=Elton%2BArchive%2BElton%2Blecture%2Bon%2B30%2Byears%2Bof%2BBureau%2Bof%2BAnimal%2BPopulation.pdf&type_of_work=Dataset. Accessed 12 Feb 2019

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama F (2006) The end of history and the last man. Simon and Schuster, New York

    Google Scholar 

  • Gagnon M, Chew AE (2000) Dietary preferences in extant African Bovidae. J Mammal 81:490–511

    Article  Google Scholar 

  • Gamelon M, Foccardi S, Baubet E, Brandt S, Franzetti B, Rochni F, Venner S, Sæther B-E, Gaillard J-M (2017) Reproductive allocation in pulsed resource environments: a comparative study in two populations of wild boar. Oecologia 183:1065–1076

    Article  PubMed  Google Scholar 

  • Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326(5956):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Gill JL, Williams JW, Jackson ST, Donnelly JP, Schellinger GC (2012) Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat Sci Rev 34:66–80

    Article  Google Scholar 

  • Gordon IJ (1989) Vegetation community selection by ungulates on the Isle of Rhum III. Determinants of vegetation community selection. J Appl Ecol 26:65–79

    Article  Google Scholar 

  • Gordon IJ (2009) What is the future for wild, large herbivores in human-modified landscapes? Wildl Biol 15:1–9

    Article  Google Scholar 

  • Gordon IJ (2019) Review: livestock production increasingly influences wildlife across the globe. Animal 12:s372–s382

    Article  Google Scholar 

  • Gordon IJ, Benvenutti M (2006) Food in 3D: how ruminant livestock interact with sown sward architecture at the bite scale. In: Bell V (ed) Feeding in domestic vertebrates: from structure to behaviour. CABI Publishing, Wallingford, pp 263–277

    Chapter  Google Scholar 

  • Gordon IJ, Illius AW (1988) Incisor arcade structure and diet selection in ruminants. Funct Ecol 2:15–22

    Article  Google Scholar 

  • Gordon IJ, Illius AW (1994) The functional significance of the browser-grazer dichotomy in African ruminants. Oecologia 98:167–175

    Article  PubMed  Google Scholar 

  • Gordon IJ, Prins HHT (2008) The ecology of browsing and grazing. Springer, Berlin

    Book  Google Scholar 

  • Gordon IJ, Prins HHT (2019) The ecology of browsing and grazing II. Springer, New York

    Book  Google Scholar 

  • Gordon IJ, Evans DM, Garner TWJ, Katzner T, Gompper ME, Altwegg R, Branch TA, Johnson JA, Pettorelli N (2014) Enhancing communication between conservation biologists and conservation practitioners: letter from the conservation front line. Anim Conserv 17:1–2

    Article  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Groen TA, van de Vijver CADM, van Langevelde F (2017) Do spatially homogenising and heterogenising processes affect transitions between alternative stable states? Ecol Model 365:119–128

    Article  Google Scholar 

  • Groot-Bruinderink G, Lammertsma DR, Kramer K, Wijdeven S, Baveco JM, Kuiters AT, Cornelissen P, Vulink JT, Prins HHT, van Wieren SE, de Roder F (1999) Dynamische interacties tussen hoefdieren en vegetatie in de Oostvaardersplassen. IBN-DLO, Report no. 436, Wageningen (the Netherlands)

    Google Scholar 

  • Gross D, Dubois G, Pekel JF, Mayaux P, Holmgren M, Prins HHT, Rondinini C, Boitani L (2013) Monitoring land cover changes in African protected areas in the 21st century. Eco Inform 14:31–37

    Article  Google Scholar 

  • Gunter NL, Weir TA, Slipinksi A, Bocak L, Cameron SL (2016) If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS One 11(5):e0153570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie RD (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat Sci Rev 20:549–574

    Article  Google Scholar 

  • Guthrie RD (2013) Frozen Fauna of the mammoth steppe: the story of blue babe. University of Chicago Press, Chicago

    Google Scholar 

  • Haukioja E, Koricheva J (2000) Tolerance to herbivory in woody vs. herbaceous plants. Evol Ecol 14:551–562

    Article  Google Scholar 

  • Hellmund M, Wilde V (2009) Der “Mageninhalt” von Propalaeotherium isselanum aus dem Geiseltal (Sachsen-Anhalt, Deutschland). Hercynia-Ökologie und Umwelt in Mitteleuropa 42:167–175

    Google Scholar 

  • Hempson GP, Illius AW, Hendricks HH, Bond WJ, Vetter S (2015) Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96:2170–2180

    Article  CAS  PubMed  Google Scholar 

  • Higgins JPT, Green S (eds) (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from http://handbook.cochrane.org

  • Hilbers JP, van Langevelde F, Prins HHT, Grant CC, Peel MJ, Coughenour MB, de Knegt HJ, Slotow R, Smit IP, Kiker GA, Boer WF (2015) Modelling elephant-mediated cascading effects of water point closure. Ecol Appl 25:402–415

    Article  PubMed  Google Scholar 

  • Hille Ris-Lambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61

    Article  Google Scholar 

  • Hofmann RR (1973) The ruminant stomach. East African Literature Bureau, Nairobi

    Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Hopcraft JG, Anderson TM, Pérez-Vila S, Mayemba E, Olff H (2012) Body size and the division of niche space: food and predation differentially shape the distribution of Serengeti grazers. J Anim Ecol 81:201–213

    Article  PubMed  Google Scholar 

  • Howison RA, Olff H, van de Koppel J, Smit C (2017) Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecol Monogr 87:363–378

    Article  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Hutchinson GE, MacArthur RH (1959) A theoretical ecological model of size distributions among species of animals. Am Nat 93(869):117–125

    Article  Google Scholar 

  • Illius AW, Gordon IJ (1991) Prediction of intake and digestion in ruminants by a model of rumen kinetics integrating animal size and plant characteristics. J Agr Sci 116:145–157

    Article  Google Scholar 

  • Illius A, O’Connor T (1999) On the relevance of nonequilibrium concepts to arid and semiarid grazing systems. Ecol Appl 9:798–813

    Article  Google Scholar 

  • Izraely H, Choshniak I, Shkolnik A, Stevens CE, Demment MW (1989) Factors determining the digestive efficiency of the domesticated donkey (Equus asinus asinus). Q J Exp Physiol 74:1–6

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH, Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN (2002) Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc R Soc B 269:2221–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert E (1977) Preliminary observations on the digestive and renal efficiency of Hartmann's zebra Equus zebra hartmannae. Modoqua 10:119–121

    Google Scholar 

  • Kirby KJ (2001) The impact of deer on the ground flora of British broadleaved woodland. Forestry 74:219–229

    Article  Google Scholar 

  • Knight AT, Cowling RM, Rouget M, Balmford A, Lombard AT, Campbell BM (2008) Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conserv Biol 22:610–617

    Article  PubMed  Google Scholar 

  • Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. Annual Rev Ecol Evol Syst 37:215–250

    Article  Google Scholar 

  • Koenigswald W v, Schaarschmidt F (1983) Ein Urpferd aus Messel, das Weinbeeren fraB. Natur Mus 113:79–84

    Google Scholar 

  • Kramer K, Groen TA, van Wieren SV (2003) The interacting effects of ungulates and fire on forest dynamics: an analysis using the model FORSPACE. For Ecol Manag 181:205–222

    Article  Google Scholar 

  • Kramer K, Groot-Bruinderink G, Prins HHT (2006) Spatial interactions between ungulate herbivory and forest management. For Ecol Manag 226:238–247

    Article  Google Scholar 

  • Kramer K, Cornelissen P, Groot-Bruinderink G, Kuiters AT, Lammertsma DR, Vulink JT, van Wieren SE, Prins HHT (2017) Effects of weather variability and geese on population dynamics of large herbivores creating opportunities for wood-pasture cycles. In: Cornelissen P (ed) Large herbivores as a driving force of woodland-grassland cycles. Wageningen University, Wageningen, pp 109–123

    Google Scholar 

  • Lee-Thorp J, van der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. S Afr J Sci 83:712–715

    Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Loison A, Langvatn R, Solberg EJ (1999) Body mass and winter mortality in red deer calves: disentangling sex and climate effects. Ecography 22:20–30

    Article  Google Scholar 

  • Loor JJ, Vailati-Riboni M, McCann JC, Zhou Z, Bionaz M (2015) Triennial lactation symposium: Nutrigenomics in livestock: systems biology meets nutrition 1. J Anim Sci 93:5554–5574

    Article  CAS  PubMed  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27:1297–1328

    Article  Google Scholar 

  • Malhi Y, Doughty CE, Galetti M et al (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc Natl Acad Sci U S A 113:838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin PS (1967) Prehistoric overkill. In: Martin PS, Wright HEJ (eds) Pleistocene extinctions: the search for a cause. Yale University Press, New Haven, pp 75–120

    Google Scholar 

  • Martin PS (2005) Twilight of the mammoths: ice age extinctions and the rewilding of America. University of California Press, Berkeley, CA

    Google Scholar 

  • Meissner HH, Pieterse E, Potgieter JHJ (1996) Seasonal food selection and intake by male impala Aepyceros melampus in two habitats. S Afr J Wildl Res 26:56–63

    Google Scholar 

  • Merkle JA, Fortin D, Morales JM (2014) A memory-based foraging tactic reveals an adaptive mechanism for restricted space use. Ecol Lett 17:924–931

    Article  CAS  PubMed  Google Scholar 

  • Mills MSL (2004) Bird community responses to savanna fires: should managers be concerned? S Afr J Wildl Res 34:1–11

    Google Scholar 

  • Mitchell CD, Channey R, Aho K, Kie JG, Bowyer RT (2015) Density of Dall’s sheep in Alaska: effects of predator harvest? Mammal Res 60:21–28

    Article  Google Scholar 

  • Mkhize NR, Heitkönig IM, Scogings PF, Dziba LE, Prins HHT, de Boer WF (2015) Condensed tannins reduce browsing and increase grazing time of free-ranging goats in semi-arid savannas. Appl Anim Behav Sci 169:33–37

    Article  Google Scholar 

  • Moser B, Schütz M (2006) Tolerance of understory plants subject to herbivory by roe deer. Oikos 114:311–321

    Article  Google Scholar 

  • Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758

    Article  PubMed  Google Scholar 

  • Murray MG (1993) Comparative nutrition of wildebeest, hartebeest and topi in the Serengeti. Afr J Ecol 31:172–177

    Article  Google Scholar 

  • Murray MG, Brown D (1993) Niche separation of grazing ungulates in the Serengeti: an experimental test. J Anim Ecol 62:380–389

    Article  Google Scholar 

  • Mutanga O, Skidmore AK (2004) Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens 25:3999–4014

    Article  Google Scholar 

  • Myers JH (2018) Population cycles: generalities, exceptions and remaining mysteries. Proc R Soc B Biol Sci 285(1875):20172841

    Article  Google Scholar 

  • Navarro LM, Pereira HM (2015) Rewilding abandoned landscapes in Europe. In: Navarro LM, Pereira HM (eds) Rewilding European landscapes. Springer, Cham, pp 3–23

    Google Scholar 

  • Olff H, Ritchie ME, Prins HHT (2002) Global environmental controls of diversity in large herbivores. Nature 415:901–904

    Article  CAS  PubMed  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Parker KL, Barboza PS, Gillingham MP (2009) Nutrition integrates environmental responses of ungulates. Funct Ecol 23:57–69. https://doi.org/10.1111/j.1365-2435.2009.01528.x

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Petty AM, Werner PA (2010) How many buffalo does it take to change a savanna? A response to Bowman et al. (2008). J Biogeogr 37:193–195

    Article  Google Scholar 

  • Prado JL, Alberdi MT (2017) Fossil horses of South America. Springer, Cham

    Book  Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African buffalo: social inequality and decision making. Chapman & Hall, London. (now Springer Science & Business Media)

    Book  Google Scholar 

  • Prins HHT (1998) Origins and development of grassland communities in northwestern Europe. In: WallisDeVries MF, Vries MFW, Bakker JP, Bakker JP, van Wieren SE (eds) Grazing and conservation management. Springer, Berlin, pp 55–103

    Chapter  Google Scholar 

  • Prins HHT, Gordon IJ (eds) (2014a) Invasion biology and ecological theory. Insights from a continent in transformation. Cambridge University Press, Cambridge

    Google Scholar 

  • Prins HHT, Gordon IJ (2014b) A critique of ecological theory and a salute to natural history. In: Prins HHT, Gordon IJ (eds) Invasion biology and ecological theory: insights from a continent in transformation. Cambridge University Press, Cambridge, pp 497–516

    Chapter  Google Scholar 

  • Prins HHT, Olff H (1998) Species-richness of African grazer assemblages: towards a functional explanation. In: Newberry DM, Prins HHT, Brown ND (eds) Dynamics of tropical communities: 37th symposium of the British Ecological Society. Cambridge University Press, Cambridge, pp 449–490

    Google Scholar 

  • Prins HHT, Van der Jeugd HP (1993) Herbivore population crashes and woodland structure in East Africa. J Ecol 81:305–314

    Article  Google Scholar 

  • Prins HHT, van Langevelde F (2008) Assembling a diet from different places. In: Prins HHT, van Langevelde F (eds) Resource ecology. Springer, Dordrecht, pp 139–155

    Chapter  Google Scholar 

  • Prins HHT, Van Oeveren H (2014) Bovini as keystone species and landscape architects. In: Melletti M, Burton J (eds) Ecology, evolution and behaviour of wild cattle. Cambridge University Press, Cambridge, pp 21–29

    Chapter  Google Scholar 

  • Rees WA (1974) Preliminary studies into bush utilization by cattle in Zambia. J Appl Ecol 11:207–214

    Article  Google Scholar 

  • Rietkerk M, Ketner P, Stroosnijder L, Prins HHT (1996) Sahelian rangeland development; a catastrophe? J Range Manag 49:512–519

    Article  Google Scholar 

  • Rietkerk M, Boerlijst M, van Langevelde F, HilleRisLambers R, van de Koppel J, Kumar L, Prins HHT, de Roos A (2002a) Self-organization of vegetation in arid ecosystems. Am Nat 160:524–530

    Article  PubMed  Google Scholar 

  • Rietkerk M, Ouedraogo T, Kumar L, Sanou S, van Langevelde F, Kiema A, van de Koppel J, van Andel J, Hearne J, Skidmore AK, de Ridder N, Stroosnijder L, Prins HHT (2002b) Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel. Plant Soil 239:69–77

    Article  CAS  Google Scholar 

  • Rivals F, Lister AM (2016) Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat Sci Rev 146:116–133

    Article  Google Scholar 

  • Rivals F, Prignano L, Semprebon GM, Lozano S (2015) A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear. Sci Rep 5:17330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson TP, Wint GW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, Cinardi G, D’Aietti L, Hay SI, Gilbert M (2014) Mapping the global distribution of livestock. PLoS One 9:e96084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein DR, Rubenstein DI, Sherman PW, Gavin TA (2006) Pleistocene Park: does re-wilding North America represent sound conservation for the 21st century? Biol Conserv 132:232–238

    Article  Google Scholar 

  • Saarinen J, Lister AM (2016) Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J Quat Sci 31:799–808

    Article  Google Scholar 

  • Saarinen J, Eronen J, Fortelius M, Seppä H, Lister AM (2016) Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeontol Electron 19.3.32A:1–58. palaeo-electronica.org/content/2016/1567-pleistocene-mammal-ecometrics

    Google Scholar 

  • Sandom C, Faurby S, Sandel B et al (2014) Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B 281:20133254

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardö J, Banyikwa F, Bronn A, Bucini G, Caylor K, Coughenour M, Diouf A, Ekaya W, Feral CJ, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849

    Article  CAS  PubMed  Google Scholar 

  • Schweiger AH, Svenning JC (2018) Down-sizing of dung beetle assemblages over the last 53000 years is consistent with a dominant effect of megafauna losses. Oikos 127:1–8

    Article  Google Scholar 

  • Searle KR, Gordon IJ, Stokes CJ (2009) Hysteresis responses to grazing in a semi-arid rangeland. Rangel Ecol Manage 62:136–144

    Article  Google Scholar 

  • Seeber P, Ndlovu HT, Duncan P, Ganswindt A (2012) Grazing behaviour of the giraffe in Hwange National Park, Zimbabwe. Afr J Ecol 50:247–250

    Article  Google Scholar 

  • Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA (2017) Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst 48:183–206

    Article  Google Scholar 

  • Shrestha AK, Van Wieren SE, Van Langevelde F, Fuller A, Hetem RS, Meyer L, De Bie S, Prins HHT (2014) Larger antelopes are sensitive to heat stress throughout all seasons but smaller antelopes only during summer in an African semi-arid environment. Int J Biometeorol 58:41–49

    Article  CAS  PubMed  Google Scholar 

  • Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Philos Trans R Soc London B: Biol Sci 357:1153–1170

    Article  Google Scholar 

  • Sinclair ARE, Krebs CJ (2002) Complex numerical responses to top–down and bottom–up processes in vertebrate populations. Philos Trans R Soc London B: Biol Sci 357:1221–1231

    Article  CAS  Google Scholar 

  • Sinclair N, Pimm D, Higginson W (eds) (2006) Mathematics and the aesthetic: new approaches to an ancient affinity. Springer, New York

    Google Scholar 

  • Smith FA, Doughty CE, Malhi Y, Svenning JC, Terborgh J (2016) Megafauna in the earth system. Ecography 39:99–108

    Article  Google Scholar 

  • Smith FA, Smith RE, Lyons SK, Payne JL (2018) Body size downgrading of mammals over the late Quaternary. Science 360:310–313

    Article  CAS  PubMed  Google Scholar 

  • Specht A, Gordon IJ, Groves RH, Lambers H, Phinn SR (2015) Catalysing transdisciplinary synthesis in ecosystem science and management. Sci Total Environ 534:1–3

    Article  CAS  Google Scholar 

  • Stigter JD, van Langevelde F (2004) Optimal harvesting in a two-species model under critical de-pensation. The case of optimal harvesting in semi-arid grazing systems. Ecol Model 179:153–161

    Article  Google Scholar 

  • Stuart AJ (2015) Late Quaternary megafaunal extinctions on the continents: a short review. Geol J 50:338–363

    Article  Google Scholar 

  • Sullivan S, Rohde R (2002) On non-equilibrium in arid and semi-arid grazing systems. J Biogeogr 29:1595–1618

    Article  Google Scholar 

  • Thomson JM (2016) Impacts of environment on gene expression and epigenetic modification in grazing animals. J Anim Sci 94(Suppl 6):63–73

    Article  CAS  Google Scholar 

  • Tomlinson KW, van Langevelde F, Ward D, Bongers F, da Silva DA, Prins HHT, de Bie S, Sterck FJ (2013) Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage. Ann Bot 112:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson KW, van Langevelde F, Ward D, Prins HHT, de Bie S, Vosman B, Sampaio EV, Sterck FJ (2016) Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species. Oikos 125:126–136

    Article  CAS  Google Scholar 

  • Tomlinson KW, Sterck FJ, Barbosa ER, de Bie S, Prins HHT, van Langevelde F (2018) Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. J Ecol. https://doi.org/10.1111/1365-2745.13085

  • Tucker CJ (1978) Post senescent grass canopy remote sensing. Remote Sens Environ 7:203–210

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • United Nations (2017) World population prospects: the 2017 revision. Population Division, Population Estimates and Projections Section, United Nations Department of Economic and Social Affairs, New York, USA. http://esa.un.org/unpd/wpp/index.htm. Retrieved 16 February 2019

  • Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215

    Article  Google Scholar 

  • Van der Waal C, De Kroon H, De Boer WF, Heitkönig IMA, Skidmore AK, De Knegt HJ, Van Langevelde F, Van Wieren SE, Grant RC, Page BR, Slotow R, Kohi EM, Mwakiwa E, Prins HHT (2009) Water and nutrients alter herbaceous competitive effects on tree seedlings in a semi-arid savanna. J Ecol 97:430–439

    Article  Google Scholar 

  • Van der Waal C, de Kroon H, Heitkönig IMA, Skidmore AK, van Langevelde F, de Boer WF, Slotow R, Grant RC, Peel MP, Kohi EM, de Knegt HJ, Prins HHT (2011) Scale of nutrient patchiness mediates resource partitioning between trees and grasses in a semi-arid savanna. J Ecol 2011:1124–1133

    Article  Google Scholar 

  • Van Langevelde F, Prins HHT (2008) Introduction to resource ecology. In: Prins HHT, van Langevelde F (eds) Resource ecology. Springer, Dordrecht, pp 1–6

    Google Scholar 

  • Van Langevelde F, Drescher M, Heitkönig IMA, Prins HHT (2008) Instantaneous intake rate of herbivores as function of forage quality and mass: effects on facilitative and competitive interactions. Ecol Model 213:273–284

    Article  Google Scholar 

  • Van Langevelde F, Tomlinson K, Barbosa ER, de Bie S, Prins HHT, Higgins SI (2010) Understanding tree-grass coexistence and impacts of disturbance and resource variability in savannas. In: Hill MJ, Hanan NP (eds) Ecosystem function in savannas: measurement and modelling at landscape to global scales. CRC Press, Boca Raton, pp 257–271

    Chapter  Google Scholar 

  • Van Maanen E, Convery I (2016) Rewilding: the realisation and reality of a new challenge for nature in the twenty-first century. In: Convery I, Davis P (eds) Changing perceptions of nature. Boydell & Brewer, Suffolk, pp 303–319

    Google Scholar 

  • Van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738–747

    Article  PubMed  Google Scholar 

  • Van Soest PJ (1982) Nutritional ecology of the ruminant. 0 & B Books, Corvallis, OR

    Google Scholar 

  • Van Soest PJ (2018) Nutritional ecology of the ruminant. Cornell University Press, Ithaca

    Google Scholar 

  • Venter JA, Prins HHT, Balfour DA, Slotow R (2014) Reconstructing grazer assemblages for protected area restoration. PLoS One 9(3):e90900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheyden-Tixier H, Renaud P-C, Morellet N, Jamot J, Besle J-M, Dumont B (2008) Selection for nutrients by red deer hinds feeding on a mixed forest edge. Oecologia 156:715–726

    Article  PubMed  Google Scholar 

  • Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as an indicator of diet. Science 201:908–910

    Article  CAS  PubMed  Google Scholar 

  • Wiens JA (1982) On size ratios and sequences in ecological communities: are there no rules? Ann Zool Fenn 19:297–308

    Google Scholar 

  • Wilde V, Hellmund M (2010) First record of gut contents from a middle Eocene equid from the Geiseltal near Halle (Saale), Sachsen-Anhalt, Central Germany. Paleobiodivers Paleoenviron 2:153–162

    Article  Google Scholar 

  • Wirsenius S, Azar C, Berndes G (2010) How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric Syst 103:621–638

    Article  Google Scholar 

  • Wolff OJ (1997) Population regulation in mammals: an evolutionary perspective. J Anim Ecol 66:1–13

    Article  Google Scholar 

  • World Bank (2019) World bank data for low and middle income countries. https://data.worldbank.org/income-level/low-and-middle-income. Retrieved 16 February 2019

  • Yatat V, Tchuinté A, Dumont Y, Couteron P (2018) A tribute to the use of minimalistic spatially-implicit models of savanna vegetation dynamics to address broad spatial scales in spite of scarce data. Biomath 7:1812167

    Article  Google Scholar 

  • Zeeman EC (1976) Catastrophe theory. Sci Am 234:65–83

    Article  Google Scholar 

  • Zeeman EC (1977) Catastrophe theory: selected papers, 1972–1977. Addison-Wesley, Oxford

    Google Scholar 

  • Zimov SA, Zimov NS, Tikhonov AN, Chapin FS (2012) Mammoth steppe: a high-productivity phenomenon. Quat Sci Rev 57:26–45

    Article  Google Scholar 

  • Zolkos SG, Goetz SJ, Dubayah R (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128:289–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain J. Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gordon, I.J., Prins, H.H.T. (2019). Browsers and Grazers Drive the Dynamics of Ecosystems. In: Gordon, I., Prins, H. (eds) The Ecology of Browsing and Grazing II. Ecological Studies, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-25865-8_16

Download citation

Publish with us

Policies and ethics