Skip to main content

Pervasive Sensing

  • Chapter
  • First Online:
Smart Assisted Living

Part of the book series: Computer Communications and Networks ((CCN))

  • 1363 Accesses

Abstract

The development of chips, sensors, and tele-communication, etc., with integrated sensing brings more opportunities to monitor various aspects of personal behavior and context. Especially, with the widespread use of intelligent devices and smart home infrastructure, it is more possible and convenient to sense users’ daily life. Two common information of daily life is location and activity. Location information can reveal the places of important events. Activity information can expose users’ health conditions. Besides these two kinds of information, other context also can be useful for assisting living. Hence, in this chapter, we will introduce some state-of-the-art user context sensing techniques under smart home infrastructure, including accurate indoor localization, fine-grained activity recognition, and pervasive context sensing. With the continuous sensing of location, activity, and other contextual information, it is possible to discovery users’ life patterns which are crucial for health monitoring, therapy, and other services. What is more, it will bring more opportunities for improving the quality of peoples’ life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasad M (2002) Location based services. GIS Dev 3–35

    Google Scholar 

  2. Xiang Z, Song S, Chen J et al (2004) A wireless LAN-based indoor positioning technology. IBM J Res Dev 48(5.6):617–626

    Article  Google Scholar 

  3. Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern Part C 37(6):1067–1080

    Article  Google Scholar 

  4. Kjægaard MB (2007) A taxonomy for radio location fingerprinting. In: Hightower J, Schiele B, Strang T (eds) Location- and contextawareness, LNCS, vol 4718. Springer, Berlin, pp 139–156

    Google Scholar 

  5. Brunato M, Battiti R (2005) Statistical learning theory for location fingerprinting in wireless LANs. Comput Netw 47:825–845

    Article  Google Scholar 

  6. Jiang X, Chen Y, Liu J, Gu Y, Hu L (2018) FSELM: fusion semi-supervised extreme learning machine for indoor localization with Wi-Fi and Bluetooth fingerprints. Soft Comput 22(11):3621–3635

    Article  Google Scholar 

  7. Liu J, Chen Y, Liu M, Zhao Z (2011) Selm: semi-supervised elm with application in sparse calibrated location estimation. Neurocomputing 74(16):2566–2572

    Article  Google Scholar 

  8. Pan JJ, Yang Q, Chang H, Yeung D-Y (2006) A manifold regularization approach to calibration reduction for sensor-network based tracking. In: AAAI, pp 988–993

    Google Scholar 

  9. Pan JJ, Yang Q, Pan SJ (2007) Online co-localization in indoor wireless networks by dimension reduction. In: Proceedings of the national conference on artificial intelligence, vol 22. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, p 1102

    Google Scholar 

  10. Gu Y, Chen Y, Liu J, Jiang X (2015) Semi-supervised deep extreme learning machine for Wi-Fi based localization. Neurocomputing 166:282–293

    Article  Google Scholar 

  11. Zhang Y, Zhi X (2010) Indoor positioning algorithm based on semisupervised learning. Comput Eng 36(17):277–279

    Google Scholar 

  12. Scardapane S, Comminiello D, Scarpiniti M, Uncini A (2016) A semisupervised random vector functional-link network based on the transductive framework. Inf Sci 364:156–166

    Article  Google Scholar 

  13. Vapnik V (2013) The nature of statistical learning theory. Springer science & business media, Berlin

    MATH  Google Scholar 

  14. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    Google Scholar 

  15. Jiang X, Chen Y, Liu J, Gu Y, Hu L, Shen Z (2016) Heterogeneous data driven manifold regularization model for fingerprint calibration reduction. In: 2016 International IEEE conferences on ubiquitous intelligence & computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people, and smart world congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE, pp 74–81

    Google Scholar 

  16. Hammerla N Y, Fisher J, Andras P et al (2015) PD disease state assessment in naturalistic environments using deep learning. In: Twenty-Ninth AAAI conference on artificial intelligence

    Google Scholar 

  17. Plötz T, Hammerla NY, Olivier PL (2011) Feature learning for activity recognition in ubiquitous computing. In: Twenty-second international joint conference on artificial intelligence

    Google Scholar 

  18. Wardlaw J M, Smith EE, Biessels GJ et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. The Lancet Neurol 12(8):822–838

    Google Scholar 

  19. Cook D, Feuz KD, Krishnan NC (2013) Transfer learning for activity recognition: a survey. Knowl Inf Syst 36(3):537–556

    Article  Google Scholar 

  20. Blitzer J, McDonald R, Pereira F (2006) Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 120–128

    Google Scholar 

  21. Kouw WM, Van Der Maaten LJP, Krijthe JH et al (2016) Feature-level domain adaptation. J Mach Learn Res 17(1):5943–5974

    Google Scholar 

  22. Pan SJ, Tsang IW, Kwok JT et al (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210

    Article  Google Scholar 

  23. Gong B, Shi Y, Sha F et al (2012) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2066–2073

    Google Scholar 

  24. Long M, Wang J, Sun J et al (2015) Domain invariant transfer kernel learning. IEEE Trans Knowl Data Eng 27(6):1519–1532

    Article  Google Scholar 

  25. Lin Y, Chen J, Cao Y et al (2017) Cross-domain recognition by identifying joint subspaces of source domain and target domain. IEEE Trans Cybern 47(4):1090–1101

    Article  Google Scholar 

  26. Wang J, Chen Y, Hu L et al (2018) Stratified transfer learning for cross-domain activity recognition. In: 2018 IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp 1–10

    Google Scholar 

  27. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  28. Prelec D, Seung HS, McCoy J (2017) A solution to the single-question crowd wisdom problem. Nature 541(7638):532

    Article  Google Scholar 

  29. Goodfellow I, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

    Google Scholar 

  30. Yeh RA, Chen C, Yian Lim T et al (2017) Semantic image inpainting with deep generative models. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5485–5493

    Google Scholar 

  31. Isola P, Zhu JY, Zhou T et al (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1125–1134

    Google Scholar 

  32. Ledig C, Theis L, Huszár F et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690

    Google Scholar 

  33. Zhao F, Feng J, Zhao J et al (2018) Robust lstm-autoencoders for face de-occlusion in the wild. IEEE Trans Image Process 27(2):778–790

    Article  MathSciNet  Google Scholar 

  34. Press O, Bar A, Bogin B et al (2017) Language generation with recurrent generative adversarial networks without pre-training. arXiv preprint arXiv:1706.01399

  35. Yu L, Zhang W, Wang J et al (2017) Seqgan: sequence generative adversarial nets with policy gradient. In: Thirty-first AAAI conference on artificial intelligence

    Google Scholar 

  36. Karras T, Aila T, Laine S et al (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196

  37. Brock A, Donahue J, Simonyan K (2018) Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096

  38. Alzantot M, Chakraborty S, Srivastava M (2017) Sensegen: a deep learning architecture for synthetic sensor data generation. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops). IEEE, pp 188–193

    Google Scholar 

  39. Wang J, Chen Y, Gu Y et al (2018) SensoryGANs: an effective generative adversarial framework for sensor-based human activity recognition. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

    Google Scholar 

  40. Yao S, Zhao Y, Shao H et al (2018) Sensegan: enabling deep learning for internet of things with a semi-supervised framework. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies 2(3):144

    Article  Google Scholar 

  41. Jiang X, Liu J, Chen Y et al (2016) Feature adaptive online sequential extreme learning machine for lifelong indoor localization. Neural Comput Appl 27(1):215–225

    Article  Google Scholar 

  42. Hou C, Zhou ZH (2018) One-pass learning with incremental and decremental features. IEEE Trans Pattern Anal Mach Intell 40(11):2776–2792

    Article  Google Scholar 

  43. Xing Y, Shen F, Zhao J (2015) Perception evolution network adapting to the emergence of new sensory receptor. In: Twenty-fourth international joint conference on artificial intelligence

    Google Scholar 

  44. Hu C, Chen Y, Peng X et al (2018) A novel feature incremental learning method for sensor-based activity recognition. IEEE Trans Knowl Data Eng

    Google Scholar 

  45. Zhao Z, Chen Z, Chen Y et al (2014) A class incremental extreme learning machine for activity recognition. Cognit Comput 6(3):423–431

    Article  Google Scholar 

  46. Camoriano R, Pasquale G, Ciliberto C et al (2017) Incremental robot learning of new objects with fixed update time. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3207–3214

    Google Scholar 

  47. Zhu Y, Ting KM, Zhou ZH (2017) New class adaptation via instance generation in one-pass class incremental learning. In: 2017 IEEE international conference on data mining (ICDM). IEEE, pp 1207–1212

    Google Scholar 

  48. Ristin M, Guillaumin M, Gall J et al (2016) Incremental learning of random forests for large-scale image classification. IEEE Trans Pattern Anal Mach Intell 38(3):490–503

    Article  Google Scholar 

  49. Hu C, Chen Y, Hu L et al (2018) A novel random forests based class incremental learning method for activity recognition. Pattern Recognit 78:277–290

    Article  Google Scholar 

  50. Kanbay A, Buyukoglan H, Ozdogan N et al (2012) Obstructive sleep apnea syndrome is related to the progression of chronic kidney disease. Int Urol Nephrol 44(2):535–539

    Article  Google Scholar 

  51. Berry RB, Brooks R, Gamaldo CE et al (2012) The AASM manual for the scoring of sleep and associated events. In: Rules, terminology and technical specifications. Darien, Illinois, American Academy of Sleep Medicine, p 176

    Google Scholar 

  52. Jawbone Up https://jawbone.com/up

  53. Hoque E, Dickerson RF, Stankovic JA (2010) Monitoring body positions and movements during sleep using wisps. In: Wireless health 2010. ACM, pp 44–53

    Google Scholar 

  54. Hao T, Xing G, Zhou G (2013) iSleep: unobtrusive sleep quality monitoring using smartphones. In: Proceedings of the 11th ACM conference on embedded networked sensor systems. ACM, p 4

    Google Scholar 

  55. Zhang Y, Chen Y, Hu L et al (2017) An effective deep learning approach for unobtrusive sleep stage detection using microphone sensor. In: 2017 IEEE 29th international conference on tools with artificial intelligence (ICTAI). IEEE Computer Society

    Google Scholar 

  56. LeCun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  57. Fogarty J, Au C, Hudson SE (2006) Sensing from the basement: a feasibility study of unobtrusive and low-cost home activity recognition. In: Proceedings of the 19th annual ACM symposium on user interface software and technology. ACM, pp 91–100

    Google Scholar 

  58. Froehlich JE, Larson E, Campbell T et al (2009) HydroSense: infrastructure-mediated single-point sensing of whole-home water activity. In: Proceedings of the 11th international conference on Ubiquitous computing. ACM, pp 235–244

    Google Scholar 

  59. Thomaz E, Bettadapura V, Reyes G et al (2012) Recognizing water-based activities in the home through infrastructure-mediated sensing. In: Proceedings of the 2012 ACM conference on ubiquitous computing. ACM, pp 85–94

    Google Scholar 

  60. Hu L, Chen Y, Wang S et al (2013) A nonintrusive and single-point infrastructure-mediated sensing approach for water-use activity recognition. In: 2013 IEEE 10th international conference on high performance computing and communications & 2013 IEEE international conference on embedded and ubiquitous computing. IEEE, pp 2120–2126

    Google Scholar 

  61. Qi H, Guo Z, Chen X et al (2017) Video-based human heart rate measurement using joint blind source separation. Biomed Signal Process Control 31:309–320

    Article  Google Scholar 

  62. Min SD, Kim JK, Shin HS et al (2010) Noncontact respiration rate measurement system using an ultrasonic proximity sensor. IEEE Sens J, 10(11):1732–1739

    Google Scholar 

  63. Li C, Peng Z, Huang TY et al (2017) A review on recent progress of portable short-range noncontact microwave radar systems. IEEE Trans Microw Theory Techn 65(5):1692–1706

    Article  Google Scholar 

  64. Hosseini SMAT, Amindavar H (2017) UWB radar signal processing in measurement of heartbeat features[C]. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1004–1007

    Google Scholar 

  65. Wang FK, Tang MC, Su SC et al (2016) Wrist pulse rate monitor using self-injection-locked radar technology. Biosensors 6(4):54

    Article  Google Scholar 

  66. Cho HS, Park YJ, Lyu HK et al (2017) Novel heart rate detection method using UWB impulse radar. J Signal Process Syst 87(2):229–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2020). Pervasive Sensing. In: Chen, F., García-Betances, R., Chen, L., Cabrera-Umpiérrez, M., Nugent, C. (eds) Smart Assisted Living. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-25590-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25590-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25589-3

  • Online ISBN: 978-3-030-25590-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics