Skip to main content

Pathophysiology of Corneal Graft Rejection

  • Chapter
  • First Online:
Foundations of Corneal Disease

Abstract

The cornea is the most frequently transplanted tissue in the human body. The primary cause of corneal graft failure is immune rejection, a highly complex sequence of innate and adaptive immune responses that interact to promote tissue destruction. As our understanding of the effector pathways that drive allograft rejection has deepened, so too has our comprehension of the diverse immunoregulatory mechanisms that restrain the effector response and promote graft tolerance. This chapter reviews the incidence, the risk factors and the cellular and molecular mechanisms that underlie corneal allograft rejection. The amalgam of anatomical features, immune cells, and immunoregulatory factors that promote tolerance and immune quiescence are described. Finally, possibilities for future therapeutic approaches to promote graft survival are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bohigian GM, Estes EH, Friedlander IR, Kennedy WR, Moxley JH, Numann PJ, Salva PS, Scott WC, Skom JH, Steinhilber RM, Strong JP, Wagner HN, Braun WE, Deodhar S, Millard CE, Payne V, Richard GA, Shumway NE, Starzl TE, et al. Report of the organ transplant panel. JAMA. 1988;259:719. https://doi.org/10.1001/jama.1988.03720050055023.

    Article  Google Scholar 

  2. Niederkorn JY. Immunology and immunomodulation of corneal transplantation. Int Rev Immunol. 2002;21:173–96.

    Article  PubMed  Google Scholar 

  3. Khodadoust AA. The allograft rejection reaction: the leading cause of late failure of clinical corneal grafts, Wiley; 2008, p. 151–167. doi:https://doi.org/10.1002/9780470719985.ch9.

    Chapter  Google Scholar 

  4. Arentsen JJ. Corneal transplant allograft reaction: possible predisposing factors. Trans Am OphthalmolSoc. 1983;81:361–402.

    CAS  Google Scholar 

  5. The Collaborative Corneal Transplantation Studies Research Group. Effectiveness of histocompatibility matching in high-risk corneal trasplantation. Arch Ophthalmol. 1992;110:1392. https://doi.org/10.1001/archopht.1992.01080220054021.

    Article  Google Scholar 

  6. Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, Schwartz A. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Ophthalmology. 1994;101:1536–47.

    Article  CAS  PubMed  Google Scholar 

  7. Hill JC. Systemic cyclosporine in high-risk keratoplasty: long-term results. Eye. 1995;9:422–8. https://doi.org/10.1038/eye.1995.99.

    Article  PubMed  Google Scholar 

  8. Coster DJ, Williams KA. Management of high-risk corneal grafts. Eye. 2003;17:996–1002. https://doi.org/10.1038/sj.eye.6700634.

    Article  CAS  PubMed  Google Scholar 

  9. Tan Y, Abdulreda MH, Cruz-Guilloty F, Cutrufello N, Shishido A, Martinez RE, Duffort S, Xia X, Echegaray-Mendez J, Levy RB, Berggren P-O, Perez VL. Role of T cell recruitment and chemokine-regulated intra-graft T cell motility patterns in corneal allograft rejection. Am J Transplant. 2013;13:1461–73. https://doi.org/10.1111/ajt.12228.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg AS, Singer A. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Annu Rev Immunol. 1992;10:333–58. https://doi.org/10.1146/annurev.iy.10.040192.002001.

    Article  CAS  PubMed  Google Scholar 

  11. Hall BM. Cells mediating allograft rejection. Transplantation. 1991;51:1141–51.

    Article  CAS  PubMed  Google Scholar 

  12. Beauregard C, Huq SO, Barabino S, Zhang Q, Kazlauskas A, Dana MR. Keratocyteapoptosis and failure of corneal allografts. Transplantation. 2006;81:1577–82. https://doi.org/10.1097/01.tp.0000209503.62204.c3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glasser DB. Changing trends in keratoplasty. Am J Ophthalmol. 2011;151:394–6. https://doi.org/10.1016/j.ajo.2010.11.012.

    Article  PubMed  Google Scholar 

  14. Nanavaty MA, Wang X, Shortt AJ. Endothelial keratoplasty versus penetrating keratoplasty for Fuchs endothelial dystrophy. Cochrane Database Syst Rev. 2014:CD008420. https://doi.org/10.1002/14651858.CD008420.pub3.

  15. Price FW, Feng MT, Price MO. Evolution of endothelial keratoplasty. Cornea. 2015;34:S41–7. https://doi.org/10.1097/ICO.0000000000000505.

    Article  PubMed  Google Scholar 

  16. Ang M, Wilkins MR, Mehta JS, Tan D. Descemet membrane endothelial keratoplasty. Br J Ophthalmol. 2016;100:15–21. https://doi.org/10.1136/bjophthalmol-2015-306837.

    Article  PubMed  Google Scholar 

  17. Price MO, Price FW Jr. Endothelial keratoplasty– a review. ClinExpOphthalmol. 2010;38:128–40. https://doi.org/10.1111/j.1442-9071.2010.02213.x.

    Article  Google Scholar 

  18. Keane MC, Galettis RA, Mills RAD, Coster DJ, Williams KA. For contributors to the Australian corneal graft registry. A comparison of endothelial and penetrating keratoplasty outcomes following failed penetrating keratoplasty: a registry study. Br J Ophthalmol. 2016;100:1569–75. https://doi.org/10.1136/bjophthalmol-2015-307792.

    Article  PubMed  Google Scholar 

  19. Coster DJ, Lowe MT, Keane MC, Williams KA, Australian Corneal Graft Registry Contributors. A comparison of lamellar and penetrating keratoplastyoutcomes. Ophthalmology. 2014;121:979–87. https://doi.org/10.1016/j.ophtha.2013.12.017.

    Article  PubMed  Google Scholar 

  20. Patten JT, Cavanagh HD, Pavan-Langston D. Penetrating keratoplasty in acute herpetic corneal performations. Ann Ophthalmol. 1976;8:287–94.

    CAS  PubMed  Google Scholar 

  21. Murphy SP, Porrett PM, Turka LA. Innate immunity in transplant tolerance and rejection. Immunol Rev. 2011;241:39–48. https://doi.org/10.1111/j.1600-065X.2011.01009.x.

    Article  CAS  PubMed  Google Scholar 

  22. Amouzegar A, Chauhan SK, Dana R. Alloimmunity and tolerance in corneal transplantation. J Immunol. 2016;196:3983–91. https://doi.org/10.4049/jimmunol.1600251.

    Article  CAS  PubMed  Google Scholar 

  23. Amouzegar A, Chauhan SK. Effector and regulatory T cell trafficking in corneal allograft rejection. MediatInflamm. 2017;2017:8670280. https://doi.org/10.1155/2017/8670280.

    Article  CAS  Google Scholar 

  24. Foulsham W, Coco G, Amouzegar A, Chauhan SK, Dana R. When clarity is crucial: regulating ocular surface immunity. Trends Immunol. 2018;39:288–301.

    Article  CAS  PubMed  Google Scholar 

  25. Yamada J, Kurimoto I, Streilein JW. Role of CD4+ T cells in immunobiology of orthotopic corneal transplants in mice. Invest Ophthalmol Vis Sci. 1999;40:2614–21.

    CAS  PubMed  Google Scholar 

  26. Boisgérault F, Liu Y, Anosova N, Ehrlich E, Dana MR, Benichou G. Role of CD4+ and CD8+ T cells in allorecognition: lessons from corneal transplantation. J Immunol. 2001;167:1891–9.

    Article  PubMed  Google Scholar 

  27. Auchincloss H, Sultan H. Antigen processing and presentation in transplantation. CurrOpinImmunol. 1996;8:681–7.

    CAS  Google Scholar 

  28. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52. https://doi.org/10.1038/32588.

    Article  CAS  PubMed  Google Scholar 

  29. Steinman RM. Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med. 2001;68:160–6.

    CAS  PubMed  Google Scholar 

  30. Amescua G, Collings F, Sidani A, Bonfield TL, Rodriguez JP, Galor A, Medina C, Yang X, Perez VL. Effect of CXCL-1/KC production in high risk vascularized corneal allografts on T cell recruitment and graft rejection. Transplantation. 2008;85:615–25. https://doi.org/10.1097/TP.0b013e3181636d9d.

    Article  CAS  PubMed  Google Scholar 

  31. Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32. https://doi.org/10.1038/nri2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chauhan SK, Saban DR, Lee HK, Dana R. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol. 2009;182:148–53.

    Article  CAS  PubMed  Google Scholar 

  33. Tahvildari M, Omoto M, Chen Y, Emami-Naeini P, Inomata T, Dohlman TH, Kaye AE, Chauhan SK, Dana R.In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation. Transplantation 2016;100. doi:https://doi.org/10.1097/TP.0000000000001044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inomata T, Hua J, Di Zazzo A, Dana R. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection. Sci Rep. 2016;6:39924. https://doi.org/10.1038/srep39924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding Y, Xu J, Bromberg JS. Regulatory T cell migration during an immune response. Trends Immunol. 2012;33:174–80. https://doi.org/10.1016/j.it.2012.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chauhan SK, Saban DR, Dohlman TH, Dana R. CCL-21 conditioned regulatory T cells induce allotolerance through enhanced homing to lymphoid tissue. J Immunol. 2014;192:817–23. https://doi.org/10.4049/jimmunol.1203469.

    Article  CAS  PubMed  Google Scholar 

  37. Ueha S, Yoneyama H, Hontsu S, Kurachi M, Kitabatake M, Abe J, Yoshie O, Shibayama S, Sugiyama T, Matsushima K. CCR7 mediates the migration of Foxp3 + regulatory T cells to the paracortical areas of peripheral lymph nodes through high endothelial venules. J LeukocBiol. 2007;82:1230–8. https://doi.org/10.1189/jlb.0906574.

    Article  CAS  Google Scholar 

  38. Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev. 2014;259:88–102. https://doi.org/10.1111/imr.12160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H, Fehling HJ, Bluestone JA. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity. 2013;39:949–62. https://doi.org/10.1016/j.immuni.2013.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2013;20:62–8. https://doi.org/10.1038/nm.3432.

    Article  CAS  PubMed  Google Scholar 

  41. Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T, Bluestone JAJA, Dana R. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018;8:7059. https://doi.org/10.1038/s41598-018-25384-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. CurrOpinImmunol. 2009;21:274–80. https://doi.org/10.1016/J.COI.2009.05.021.

    Article  CAS  Google Scholar 

  43. Benghiat FS, Charbonnier LM, Vokaer B, De WV, Le MA. Interleukin 17–producing T helper cells in alloimmunity. Transplant Rev. 2009;23:11–8. https://doi.org/10.1016/j.trre.2008.08.007.

    Article  Google Scholar 

  44. Heidt S, San D, Chadha R, Wood KJ, Wood KJ. The impact of Th17 cells on transplant rejection and the induction of tolerance. CurrOpin Organ Transplant. 2010;15:456–61. https://doi.org/10.1097/MOT.0b013e32833b9bfb.

    Article  Google Scholar 

  45. Chen H, Wang W, Xie H, Xu X, Wu J, Jiang Z, Zhang M, Zhou L, Zheng S. A pathogenic role of IL- 17 at the early stage of corneal allograft rejection. TransplImmunol. 2009;21:155–61. https://doi.org/10.1016/j.trim.2009.03.006.

    Article  CAS  Google Scholar 

  46. Cunnusamy K, Chen PW, Niederkorn JY. IL-17 promotes immune privilege of corneal allografts. J Immunol. 2010;185:4651–8. https://doi.org/10.4049/jimmunol.1001576.

    Article  CAS  PubMed  Google Scholar 

  47. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 2007;7:610–21. https://doi.org/10.1038/nri2132.

    Article  CAS  PubMed  Google Scholar 

  48. Moreau A, Varey E, Bouchet-Delbos L, Cuturi M-C. Cell therapy using tolerogenic dendritic cells in transplantation. Transplant Res. 2012;1:13. https://doi.org/10.1186/2047-1440-1-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hattori T, Saban DR, Emami-naeini P, Chauhan SK, Funaki T, Ueno H, Dana R. Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J LeukocBiol. 2012;91:621–7. https://doi.org/10.1189/jlb.1011500.

    Article  CAS  Google Scholar 

  50. Tahvildari M, Emami-Naeini P, Omoto M, Mashaghi A, Chauhan SK, Dana R. Treatment of donor corneal tissue with immunomodulatory cytokines: a novel strategy to promote graft survival in high-risk corneal transplantation. Sci Rep. 2017;7:971. https://doi.org/10.1038/s41598-017-01065-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Albuquerque RJC, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15:1023–30. https://doi.org/10.1038/nm.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. ProcNatlAcadSci. 2006;103:11405–10. https://doi.org/10.1073/pnas.0506112103.

    Article  CAS  Google Scholar 

  53. Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJC, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443:993–7. https://doi.org/10.1038/nature05249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tan Y, Cruz-Guilloty F, Medina-Mendez CA, Cutrufello NJ, Martinez RE, Urbieta M, Wilson D, Li Y, Perez VL. Immunological disruption of antiangiogenicsignals by recruited allospecific T cells leads to corneal allograft rejection. J Immunol. 2012;188:5962–9. https://doi.org/10.4049/jimmunol.1103216.

    Article  CAS  PubMed  Google Scholar 

  55. Cursiefen C, Masli S, Ng TF, Dana MR, Bornstein P, Lawler J, Streilein JW. Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci. 2004;45:1117–24.

    Article  PubMed  Google Scholar 

  56. Jin Y, Chauhan SK, El Annan J, Annan JEI, Sage PT, Sharpe AH, Dana R. A novel function for programmed death ligand-1regulation of angiogenesis. Am J Pathol. 2011;178:1922–9. https://doi.org/10.1016/j.ajpath.2010.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferrari G, Hajrasouliha AR, Sadrai Z, Ueno H, Chauhan SK, Dana R. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol Vis Sci. 2013;54:813–20. https://doi.org/10.1167/iovs.11-8379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cursiefen C, Maruyama K, Bock F, Saban D, Sadrai Z, Lawler J, Dana R, Masli S. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J Exp Med. 2011;208:1083–92. https://doi.org/10.1084/jem.20092277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–92. https://doi.org/10.1016/j.immuni.2009.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest. 1997;99:396–402. https://doi.org/10.1172/JCI119173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamagami S, Kawashima H, Tsuru T, Yamagami H, Kayagaki N, Yagita H, Okumura K, Gregerson DS. Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation. 1997;64:1107–11.

    Article  CAS  PubMed  Google Scholar 

  62. Yang W, Li H, Chen PW, Alizadeh H, He Y, Hogan RN, Niederkorn JY. PD-L1 expression on human ocular cells and its possible role in regulating immune-mediated ocular inflammation. InvestigOpthalmol Vis Sci. 2009;50:273. https://doi.org/10.1167/iovs.08-2397.

    Article  Google Scholar 

  63. Shen L, Jin Y, Freeman GJ, Sharpe AH, Dana MR. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J Immunol. 2007;179:3672–9.

    Article  CAS  PubMed  Google Scholar 

  64. Dana MR, Dai R, Zhu S, Yamada J, Streilein JW. Interleukin-1 receptor antagonist suppresses Langerhans cell activity and promotes ocular immune privilege. Invest Ophthalmol Vis Sci. 1998;39:70–7.

    CAS  PubMed  Google Scholar 

  65. Dana MR, Yamada J, Streilein JW. Topical interleukin 1 receptor antagonist promotes corneal transplant survival. Transplantation. 1997;63:1501–7.

    Article  CAS  PubMed  Google Scholar 

  66. Contreras-Ruiz L, Masli S. Immunomodulatory cross-talk between conjunctival goblet cells and dendritic cells. PLoS One. 2015;10:e0120284. https://doi.org/10.1371/journal.pone.0120284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saban DR, Bock F, Chauhan SK, Masli S, Dana R. Thrombospondin-1 derived from APCs regulates their capacity for allosensitization. J Immunol. 2010;185:4691–7. https://doi.org/10.4049/jimmunol.1001133.

    Article  CAS  PubMed  Google Scholar 

  68. Hamrah P, Haskova Z, Taylor AW, Zhang Q, Ksander BR, Dana MR. Local treatment with alpha-melanocyte stimulating hormone reduces corneal allorejection. Transplantation. 2009;88:180–7. https://doi.org/10.1097/TP.0b013e3181ac11ea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Satitpitakul V, Sun Z, Suri K, Amouzegar A, Katikireddy KR, Jurkunas UV, Kheirkhah A, Dana R. Vasoactive intestinal peptide promotes corneal allograft survival. Am J Pathol. 2018;188:2016–24. https://doi.org/10.1016/j.ajpath.2018.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sabatino F, Di Zazzo A, De Simone L, Bonini S. The intriguing role of neuropeptides at the ocular surface. Ocul Surf. 2017;15:2–14. https://doi.org/10.1016/j.jtos.2016.10.003.

    Article  PubMed  Google Scholar 

  71. Abud TB, Di Zazzo A, Kheirkhah A, Dana R. Systemic immunomodulatorystrategies in high-risk corneal transplantation. J Ophthalmic Vis Res. 2017;12:81–92. https://doi.org/10.4103/2008-322X.200156.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guo X, Jie Y, Ren D, Zeng H, Zhang Y, He Y, Pan Z. In vitro-expanded CD4(+)CD25(high)Foxp3(+) regulatory T cells controls corneal allograft rejection. Hum Immunol. 2012;73:1061–7. https://doi.org/10.1016/j.humimm.2012.08.014.

    Article  CAS  PubMed  Google Scholar 

  73. Shao C, Chen Y, Nakao T, Amouzegar A, Yin J, Tahvildari M, Lužnik Z, Chauhan SK, Dana R. Local delivery of regulatory T cells promotes corneal allograft survival. Transplantation. 2018;103:182. https://doi.org/10.1097/TP.0000000000002442.

    Article  CAS  Google Scholar 

  74. Omoto M, Katikireddy KR, Rezazadeh A, Dohlman TH, Chauhan SK. Mesenchymal stem cells home to inflamed ocular surface and suppress allosensitization in corneal transplantation. Invest Ophthalmol Vis Sci. 2014;55:6631–8. https://doi.org/10.1167/iovs.14-15413.

    Article  CAS  PubMed  Google Scholar 

  75. Oh JY, Lee RH, Yu JM, Ko JH, Lee HJ, Ko AY, Roddy GW, Prockop DJ. Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. MolTher. 2012;20:2143–52. https://doi.org/10.1038/mt.2012.165.

    Article  CAS  Google Scholar 

  76. Xu Q, Tan X, Zhang Y, Jie Y, Pan Z. Subconjunctival injection of in vitro transforming growth factor-β-induced regulatory T cells prolongs allogeneic corneal graft survival in mice. Int J ClinExp Med. 2015;8:20271–8.

    CAS  Google Scholar 

  77. Emami-Naeini P, Dohlman TH, Omoto M, Hattori T, Chen Y, Lee HS, Chauhan SK, Dana R. Soluble vascular endothelial growth factor receptor-3 suppresses allosensitization and promotes corneal allograft survival. Graefes Arch ClinExpOphthalmol. 2014;252:1755–62. https://doi.org/10.1007/s00417-014-2749-5.

    Article  CAS  Google Scholar 

  78. Dohlman TH, Omoto M, Hua J, Stevenson W, Lee S-M, Chauhan SK, Dana R. VEGF-trap afliberceptsignificantly improves long-term graft survival in high-risk corneal transplantation. Transplantation. 2015;99:678–86. https://doi.org/10.1097/TP.0000000000000512.

    Article  CAS  PubMed  Google Scholar 

  79. Fasciani R, Mosca L, Giannico MI, Ambrogio SA, Balestrazzi E. Subconjunctival and/or intrastromalbevacizumab injections as preconditioning therapy to promote corneal graft survival. IntOphthalmol. 2015;35:221–7. https://doi.org/10.1007/s10792-014-9938-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Dana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez, V.L., Foulsham, W., Peterson, K., Dana, R. (2020). Pathophysiology of Corneal Graft Rejection. In: Colby, K., Dana, R. (eds) Foundations of Corneal Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25335-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25335-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25334-9

  • Online ISBN: 978-3-030-25335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics