Skip to main content

Antibiotic Persisters and Relapsing Salmonella enterica Infections

  • Chapter
  • First Online:
Persister Cells and Infectious Disease

Abstract

Antibiotic persistence is defined as the ability of a subpopulation of bacteria within a clonal antibiotic-susceptible population to survive antibiotic treatment. Studies on antibiotic persistence have traditionally been carried out on bacteria cultured in laboratory media. However, over recent years, there has been a push to study antibiotic persisters in more physiologically relevant systems. Thus, the concept of antibiotic persistence during infection, which refers to the ability of a subpopulation of bacteria to survive combined host and antibiotic challenges, has emerged as a major new frontier of research. Here, we discuss the relevance and principles of this concept using relapsing Salmonella enterica infections as an example. We critically evaluate the clinical and experimental evidence for the existence and importance of antibiotic persisters in relapsing Salmonella infections; we outline our current understanding of the molecular mechanisms that enable successful antibiotic persistence during infection; and, finally, we discuss the challenges for this nascent field going forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Avci, P., Karimi, M., Sadasivam, M., Antunes-Melo, W., Carrasco, E., & Hamblin, M. (2018). In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence, 9, 28–63.

    Article  PubMed  Google Scholar 

  • Bhan, M., Bahl, R., & Bhatnagar, S. (2005). Typhoid and paratyphoid fever. Lancet, 366, 749–762.

    Article  CAS  PubMed  Google Scholar 

  • Caron, J., Loredo-Osti, J., Laroche, L., Skamene, E., Morgan, K., & Malo, D. (2002). Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection: An unexpected role of Nramp1 (Slc11a1) in the persistence of infection in mice. Genes and Immunity, 3, 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Carter, P., & Collins, F. (1974). The route of enteric infection in normal mice. The Journal of Experimental Medicine, 139, 1189–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellier, M., Courville, P., & Campion, C. (2007). Nramp1 phagocyte intracellular metal withdrawal defense. Microbes and Infection, 9, 1662–1670.

    Article  CAS  PubMed  Google Scholar 

  • Cheverton, A., Gollan, B., Przydacz, M., Wong, C., Mylona, A., Hare, S., & Helaine, S. (2016). A Salmonella toxin promotes persister formation through acetylation of tRNA. Molecular Cell, 63, 86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirillo, D., Valdivia, R., Monack, D., & Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Molecular Microbiology, 30, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Claudi, B., Spröte, P., Chirkova, A., Personnic, N., Zankl, J., Schürmann, N., Schmidt, A., & Bumann, D. (2014). Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell, 158, 722–733.

    Article  CAS  PubMed  Google Scholar 

  • Conlon, B., Rowe, S., Gandt, A., Nuxoll, A., Donegan, N., Zalis, E., Clair, G., Adkins, J., Cheung, A., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feasey, N., Dougan, G., Kingsley, R., Heyderman, R., & Gordon, M. (2012). Invasive non-typhoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet, 379, 2489–2499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fields, P., Swanson, R., Haidaris, C., & Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceedings of the National Academy of Sciences of the United States of America, 83, 5189–5193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueira, R., & Holden, D. (2012). Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology, 158, 1147–1161.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R., Gollan, B., & Helaine, S. (2017). Persistent bacterial infections and persister cells. Nature Reviews. Microbiology, 15, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Galán, J. (2001). Salmonella interactions with host cells: Type III secretion at work. Annual Review of Cell and Developmental Biology, 17, 53–86.

    Article  PubMed  Google Scholar 

  • Galán, J., & Curtiss, R., 3rd. (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 86, 6383–6387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin, A., Li, L., Voedisch, S., Pabst, O., & Mcsorley, S. (2011). Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infection and Immunity, 79, 1479–1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helaine, S., Thompson, J., Watson, K., Liu, M., Boyle, C., & Holden, D. (2010). Dynamics of intracellular bacterial replication at the single cell level. Proceedings of the National Academy of Sciences of the United States of America, 107, 3746–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helaine, S., Cheverton, A., Watson, K., Faure, L., Matthews, S., & Holden, D. (2014). Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel, M., Shea, J., Gleeson, C., Jones, M., Dalton, E., & Holden, D. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Hensel, M., Shea, J., Waterman, S., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F., & Holden, D. (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Molecular Microbiology, 30, 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, E., Thurston, T., & Holden, D. (2017). Salmonella SPI-2 type III secretion system effectors: Molecular mechanisms and physiological consequences. Cell Host and Microbe, 22, 217–231.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, P., Regoes, R., Dolowschiak, T., Wotzka, S., Lengefeld, J., Slack, E., Grant, A., Ackermann, M., & Hardt, W. (2014). Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biology, 12, e1001793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan, S., Stratford, R., Wu, T., Mckelvie, N., Bellaby, T., Hindle, Z., Sinha, K., Eltze, S., Mastroeni, P., Pickard, D., Dougan, G., Chatfield, S., & Brennan, F. (2003). Salmonella typhi and S. typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors. Vaccine, 21, 538–548.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, E., Gkrania-Klotsas, E., Hadfield, J., Forbester, J., Harris, S., Hale, C., Heath, J., Wileman, T., Clare, S., Kane, L., Goulding, D., Otto, T., Kay, S., Doffinger, R., Cooke, F., Carmichael, A., Lever, A., Parkhill, J., Maclennan, C., Kumararatne, D., Dougan, G., & Kingsley, R. (2016). Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nature Microbiology, 1, 15023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, M., Black, R., & Lanata, C. (1982). Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. The Journal of Infectious Diseases, 146, 724–726.

    Article  CAS  PubMed  Google Scholar 

  • Manina, G., Dhar, N., & Mckinney, J. (2015). Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host and Microbe, 17, 32–46.

    Article  CAS  PubMed  Google Scholar 

  • Marzel, A., Desai, P., Goren, A., Schorr, Y., Nissan, I., Porwollik, S., Valinsky, L., Mcclelland, M., Rahav, G., & Gal-Mor, O. (2016). Persistent infections by nontyphoidal Salmonella in humans: Epidemiology and genetics. Clinical Infectious Diseases, 62, 879–886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monack, D. (2013). Helicobacter and salmonella persistent infection strategies. Cold Spring Harbor Perspectives in Medicine, 3, a010348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monack, D., Bouley, D., & Falkow, S. (2004). Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. The Journal of Experimental Medicine, 199, 231–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okoro, C., Kingsley, R., Quail, M., Kankwatira, A., Feasey, N., Parkhill, J., Dougan, G., & Gordon, M. (2012). High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clinical Infectious Diseases, 54, 955–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter-Dahlfors, A., Buchan, A., & Finlay, B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. The Journal of Experimental Medicine, 186, 569–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, O., Dybowski, R., Maskell, D., Grant, A., Restif, O., & Mastroeni, P. (2017). Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. The Journal of Antimicrobial Chemotherapy, 72, 3390–3397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rycroft, J., Gollan, B., Grabe, G., Hall, A., Cheverton, A., Larrouy-Maumus, G., Hare, S., & Helaine, S. (2018). Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nature Communications, 9, 1993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salcedo, S., Noursadeghi, M., Cohen, J., & Holden, D. (2001). Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cellular Microbiology, 3, 587–597.

    Article  CAS  PubMed  Google Scholar 

  • Shan, Y., Brown Gandt, A., Rowe, S., Deisinger, J., Conlon, B., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea, J., Hensel, M., Gleeson, C., & Holden, D. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 93, 2593–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shpargel, J., Berardi, R., & Lenz, D. (1985). Salmonella Typhi carrier state 52 years after illness with typhoid fever: A case study. American Journal of Infection Control, 13, 122–123.

    Article  CAS  PubMed  Google Scholar 

  • Sinnott, C., & Teall, A. (1987). Persistent gallbladder carriage of Salmonella typhi. Lancet, 1, 976.

    Article  CAS  PubMed  Google Scholar 

  • Slattery, A., Victorsen, A., Brown, A., Hillman, K., & Phillips, G. (2013). Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. Journal of Bacteriology, 195, 647–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapels, D., Hill, P., Westermann, A., Fisher, R., Thurston, T., Saliba, A., Blommestein, I., Vogel, J., & Helaine, S. (2018). Salmonella persisters undermine host immune defences during antibiotic treatment. Science, 362, 1156–1160.

    Article  CAS  PubMed  Google Scholar 

  • Vogelsang, T., & Boe, J. (1948). Temporary and chronic carriers of Salmonella typhi and Salmonella paratyphi B. The Journal of Hygiene (Lond), 46, 252–261.

    Article  CAS  Google Scholar 

  • Wain, J., Hien, T., Connerton, P., Ali, T., Parry, C., Chinh, N., Vinh, H., Phuong, C., Ho, V., Diep, T., Farrar, J., White, N., & Dougan, G. (1999). Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: Application to acute and relapse cases of typhoid fever. Journal of Clinical Microbiology, 37, 2466–2472.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Helaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hill, P.W.S., Helaine, S. (2019). Antibiotic Persisters and Relapsing Salmonella enterica Infections. In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_2

Download citation

Publish with us

Policies and ethics