Skip to main content

Molecular Mechanisms of Insulin Resistance

  • Chapter
  • First Online:
Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Initial attempts to unravel the molecular mechanism of insulin resistance have strongly suggested that a defect responsible for insulin resistance in the majority of patients lies at the post-receptor level of insulin signaling. Subsequent studies in insulin-resistant animal models and humans have consistently demonstrated a reduced strength of insulin signaling via the IRS-1–PI 3-kinase pathway, resulting in diminished glucose uptake and utilization in insulin target tissues. However, the nature of the triggering event(s) remains largely enigmatic. Two separate, but likely complementary, mechanisms have recently emerged as a potential explanation. First, it became apparent that serine phosphorylation of IRS proteins can reduce their ability to attract PI 3-kinase, thereby minimizing its activation. A number of serine kinases that phosphorylate serine residues of IRS-1 and weaken insulin signal transduction have been identified. Additionally, mitochondrial dysfunction has been suggested to trigger activation of several serine kinases, leading to a serine phosphorylation of IRS-1. Second, a distinct mechanism involving increased expression of p85α(alpha) has also been found to play an important role in the pathogenesis of insulin resistance. Conceivably, a combination of both increased expression of p85α(alpha) and increased serine phosphorylation of IRS-1is needed to induce clinically apparent insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olefsky JM. The insulin receptor: a multifunctional protein. Diabetes. 1990;39:1009–16.

    Article  CAS  PubMed  Google Scholar 

  2. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1998;37:1595–607.

    Article  Google Scholar 

  3. DeFronzo RA. The triumvirate: beta-cell, muscle, liver. A collision responsible for NIDDM. Diabetes. 1988;37:667–87.

    Article  CAS  PubMed  Google Scholar 

  4. Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993;268:19161–4.

    CAS  PubMed  Google Scholar 

  5. Shepherd PR, Kahn BB. Glucose transporters and insulin action. N Engl J Med. 1999;341:248–57.

    Article  CAS  PubMed  Google Scholar 

  6. Cheatham B. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994;14:4902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shepherd PR, Nave BT, Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J. 1995;305:25–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lazar D. Mitogen-activated kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem. 1995;270:20801–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sutherland C, Waltner-Law M, Gnudi L, Kahn BB, Granner DK. Activation of the Ras Mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin. J Biol Chem. 1998;273:3198–204.

    Article  CAS  PubMed  Google Scholar 

  10. Bandyopadhyay GK, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, Karnam P, Moscat J, Farese RV. Activation of protein kinase (α, β, and ξ) by insulin in 3T3-L1 cells: transfection studies suggest a role for PKC-zeta in glucose transport. J Biol Chem. 1997;272:2551–8.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang ZY, Lin Y-W, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105:311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montagnani M, Golovchenko I, Kim I, Koh GY, Goalstone ML, Mundhekar AN, Johansen M, Kucik DF, Quon MJ, Draznin B. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic action of insulin in endothelial cells. J Biol Chem. 2002;277:1794–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes. 2003;52:2562–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100:7265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ginsberg H. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106:453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shulman GI. Cellular mechanisms of insulin resistance in humans. Am J Cardiol. 1999;84:3J–10J.

    Article  CAS  PubMed  Google Scholar 

  18. Birnbaum MJ. Turning down insulin signaling. J Clin Invest. 2001;108:655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.

    Article  CAS  PubMed  Google Scholar 

  20. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000;106:165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. White MF. Insulin signaling in health and disease. Science. 2003;302:1710–1.

    Article  CAS  PubMed  Google Scholar 

  22. Semple RK. How does insulin resistance arise, and how does it cause disease? Human genetic lessons. Eur J Endocrinol. 2016;174:R209–23.

    Article  CAS  PubMed  Google Scholar 

  23. Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocr Rev. 1995;16:117–41.

    CAS  PubMed  Google Scholar 

  24. Kahn CR. Insulin action, diabetogenes, and the cause of type 2 diabetes. Diabetes. 1994;43:1066–84.

    Article  CAS  PubMed  Google Scholar 

  25. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli IM, Dull TJ, Gray A, Coussens L, Liao Y-C, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313:756–61.

    Article  CAS  PubMed  Google Scholar 

  26. Ebina Y, Ellis L, Jarnagin K, Edery M, Grat L, Clauser E, Ou J-H, Masiarz F, Kan YW, Goldfine ID, Roth RA, Rutter WJ. The human insulin receptor cDNA. The structural basis for hormone-activated transmembrane signaling. Cell. 1985;40:747–58.

    Article  CAS  PubMed  Google Scholar 

  27. Seino S, Seino M, Nishi S, Bell GI. Structure of human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci U S A. 1989;86:114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kasuga M, Karisson FA, Kahn CR. Insulin stimulates the phosphorylation of the 95,000 Dalton subunit of its own receptor. Science. 1982;215:185–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wilden PA, Siddle K, Haring E, Backer JM, White MF, Kahn CR. The role of insulin receptor-kinase domain autophosphorylation in receptor-mediated activities. J Biol Chem. 1992;267:13719–27.

    CAS  PubMed  Google Scholar 

  30. De Meyts P, Chistoffersen CT, Torquist H, Seedorf K. Insulin receptors and insulin action. Curr Opin Endocrinol Diabetes. 1996;3:369–77.

    Article  Google Scholar 

  31. Rhodes CJ, White MF. Molecular insights into insulin action and secretion. Eur J Clin Invest. 2002;32(Suppl 3):3–13.

    Article  CAS  PubMed  Google Scholar 

  32. White MF, Shoelson SE, Keutmann H, Kahn CR. A cascade of autophosphorylation in the beta subunit activates phosphotransferase of the insulin receptor. J Biol Chem. 1988;263:2969–80.

    CAS  PubMed  Google Scholar 

  33. Tornqvist HE, Avruch J. Relationship of site-specific beta subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity. J Biol Chem. 1988;263:4593–601.

    CAS  PubMed  Google Scholar 

  34. Myers MG Jr, White MF. Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615–58.

    Article  CAS  PubMed  Google Scholar 

  35. Paz K, Voliovitch H, Hadari YR, Roberts CT, LeRoith D, Zick Y. Interaction between the insulin receptor and its downstream effectors. J Biol Chem. 1996;271:6998–7003.

    Article  CAS  PubMed  Google Scholar 

  36. Kolterman OG, Insel J, Saekow M, Olefsky JM. Mechanisms of insulin resistance in human obesity: evidence for receptor and post-receptor defects. J Clin Invest. 1980;65:1272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marshal S, Olefsky JM. Effects if insulin incubation on insulin binding, glucose transport, and insulin degradation by isolated rat adipocytes. Evidence for hormone-induced desensitization at the receptor and post-receptor level. J Clin Invest. 1980;66:763–72.

    Article  Google Scholar 

  38. Haring HU. The insulin receptor: signaling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia. 1991;34:848–61.

    Article  CAS  PubMed  Google Scholar 

  39. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006;119:10S–6S.

    Article  CAS  Google Scholar 

  40. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  PubMed  Google Scholar 

  41. Munster PN, Marchion DC, Basso AD, Rosen N. Degradation of HER2 by ansamycins includes growth arrest and apoptosis in cells with HER2 overexpression via HER3, phosphatidylinositol 3′-kinase-Akt-dependent pathway. Cancer Res. 2002;62:3132–7.

    CAS  PubMed  Google Scholar 

  42. Amaravadi R, Thompson GB. The survival kinases AKT and PIM as potential pharmacological targets. J Clin Invest. 2005;115:2618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ali IU, Schriml LM, Dean M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 1999;91:1922–32.

    Article  CAS  PubMed  Google Scholar 

  44. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. LeRoith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care. 2001;24:588–97.

    Article  CAS  Google Scholar 

  46. Qiao L, Goldberg JL, Russell JC, Sun XJ. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem. 1999;274:10625–32.

    Article  CAS  PubMed  Google Scholar 

  47. Um SH, Frogerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–5.

    Article  CAS  PubMed  Google Scholar 

  48. Patti M-E, Kahn BB. Nutrient sensor links obesity with diabetes risk. Nat Med. 2004;10:1049–50.

    Article  CAS  PubMed  Google Scholar 

  49. Qiao L, Zhande R, Jetton TL, Zhou G, Sun XJ. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem. 2002;277:26530–9.

    Article  CAS  PubMed  Google Scholar 

  50. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004;14:1650–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ueno M, Carvalheira JBC, Tambascia RC, Bezzera RMN, Amara ME, Carneiro EM, Folli F, Franchini KG, Saad MJA. Regulation of insulin signaling by hyperinsulinemia: role of IRS-1/2 serine phosphorylation and mTOR/p70 S6K pathway. Diabetologia. 2005;48:506–18.

    Article  CAS  PubMed  Google Scholar 

  52. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky JM, Kobayashi M. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. 2000;14:783–94.

    Article  CAS  PubMed  Google Scholar 

  53. Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle. J Biol Chem. 2001;276:38052–60.

    CAS  PubMed  Google Scholar 

  54. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, Gout I, Downes CP, Lamb RE. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirosumi J, Tuncman G, Chang L, Gorzun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–6.

    Article  CAS  PubMed  Google Scholar 

  56. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol. 2004;18:2024–34.

    Article  CAS  PubMed  Google Scholar 

  57. Nguyen MTA, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat B, Chi N-W, Olefsky JM. JNK and TNF-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem. 2005;280:35361.

    Article  CAS  PubMed  Google Scholar 

  58. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression and decreased phosphatidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes. 2005;54:2351–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lee YH, Giraud J, Davis RJ, White MF. C-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278:2896–902.

    Article  CAS  PubMed  Google Scholar 

  60. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord. 2003;27(Suppl 3):S6–11.

    Article  CAS  PubMed  Google Scholar 

  61. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kB kinase complex. J Biol Chem. 2002;277:48115–21.

    Article  CAS  PubMed  Google Scholar 

  62. Kim JK, Kim Y-J, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108:437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hundal RS, Petersen KF, Mayerson AB, Rahdhawa PS, Inzucchi S, Shoelson SE, Shulman GI. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109:1321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43:1271–8.

    Article  CAS  PubMed  Google Scholar 

  65. Qi C, Pekala PH. Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med. 2000;223:128–35.

    Article  CAS  PubMed  Google Scholar 

  66. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  67. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–4.

    Article  CAS  PubMed  Google Scholar 

  68. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance. Science. 1996;271:665–8.

    Article  CAS  PubMed  Google Scholar 

  69. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

    Article  CAS  PubMed  Google Scholar 

  70. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Y, Soos TJ, Li X, Wu J, Degennaro M, Sun X, Littman DR, Birnbaum MJ, Polakiewicz RD. Protein kinase θ inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem. 2004;279:45304–7.

    Article  CAS  PubMed  Google Scholar 

  73. Bell KS, Shcmitz-Peiffer C, Lim-Fraser M, Biden TJ, Cooney GJ, Kraegen EW. Acute reversal of lipid-induced muscle insulin resistance is associated with rapid alteration in PKC-θ localization. Am J Physiol Endocrinol Metab. 2000;279:E1196–201.

    Article  CAS  PubMed  Google Scholar 

  74. Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Soos TJ, Cline GW, O’Brien WR, Littman DR, Shulman GI. PKC-θ knockout mice are protected from fat-induced insulin resistance. J Clin Invest. 2004;114:823–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Itani SI, Pories WJ, Macdonald KG, Dohm GL. Increased protein kinase C θ in skeletal muscle of diabetic patients. Metabolism. 2001;50:553–7.

    Article  CAS  PubMed  Google Scholar 

  76. Raught B, Gingras AC, Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A. 2001;98:7037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rohde J, Heitman J, Cardenas ME. The TOR kinases link nutrient sensing to cell growth. J Biol Chem. 2001;276:9583–6.

    Article  CAS  PubMed  Google Scholar 

  78. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology. 2005;146:1473–81.

    Article  CAS  PubMed  Google Scholar 

  79. Trembley F, Gagnon A, Veilleux A, Sorisky A, Marette A. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology. 2005;146:1328–37.

    Article  CAS  Google Scholar 

  80. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998;95:1432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng OP, Kasuga M, Nishimoto I, Avruch J. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272:26457–63.

    Article  CAS  PubMed  Google Scholar 

  82. Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70S6 kinase α in vitro. J Biol Chem. 1999;274:34493–8.

    Article  CAS  PubMed  Google Scholar 

  83. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177–89.

    Article  CAS  PubMed  Google Scholar 

  84. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.

    Article  CAS  PubMed  Google Scholar 

  85. Jacinto E, Loewith R, Scmidt A, Lin S, Ruegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin sensitive. Nat Cell Biol. 2004;6:1122–8.

    Article  CAS  PubMed  Google Scholar 

  86. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10:457–68.

    Article  CAS  PubMed  Google Scholar 

  87. Sabrassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14:1296–302.

    Article  CAS  Google Scholar 

  88. Sabrassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  CAS  Google Scholar 

  89. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344:427–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1998;95:7772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB J. 2004;18:1894–6.

    Article  CAS  PubMed  Google Scholar 

  92. Pham P-TT, Heydrick SJ, Fox HL, Kimball SR, Jefferson LS Jr, Lynch CJ. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. J Cell Biochem. 2000;79:427–41.

    Article  CAS  PubMed  Google Scholar 

  93. Pende M, Kozma SC, Jaquet M, Oorshcot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G. Hypoinsulinemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature. 2000;408:994–7.

    Article  CAS  PubMed  Google Scholar 

  94. Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhausl W, Marette A, Roden M. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes. 2005;54:2674–84.

    Article  CAS  PubMed  Google Scholar 

  95. Tzatsos A, Kandor KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via Raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mussig K, Fiedler H, Staiger H, Weigert C, Lehmann R, Schleicher ED, Haring H-U. Insulin-induced stimulation of JNK and the PI 3-kinase/mTOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes. Biochem Biophys Res Commun. 2005;335:819–25.

    Article  PubMed  CAS  Google Scholar 

  97. Hiratani K, Haruta T, Tani A, Kawahara J, Usui I, Kobayashi M. Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem Biophys Res Commun. 2005;335:836–42.

    Article  CAS  PubMed  Google Scholar 

  98. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of ser307. J Biol Chem. 2000;275:9047–54.

    Article  CAS  PubMed  Google Scholar 

  99. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature. 2002;410:333–6.

    Article  CAS  Google Scholar 

  100. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKK-beta. Science. 2001;293:1673–7.

    Article  CAS  PubMed  Google Scholar 

  101. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon M, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277:48115–21.

    Article  CAS  PubMed  Google Scholar 

  102. Kim F, Tysseling KA, Rice J, Gallis B, Haji L, Giachelli CM, Raines EW, Corson MA, Schwartz MW. Activation of IKKβ by glucose is necessary and sufficient to impair insulin signaling and nitric oxide production in endothelial cells. J Mol Cell Cardiol. 2005;39:327–34.

    Article  CAS  PubMed  Google Scholar 

  103. Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol. 2002;22:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem J. 1998;333:471–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110 alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol. 1998;18:1379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G, Fry MJ, Yonezawa K, Kasuga M, Waterfield MD. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 1994;13:511–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Klippel A, Escobedo JA, Hirano M, Williams LT. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol. 1994;14:2675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu P, Mondino A, Skolnik EY, Schlessinger J. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol. 1993;13:7677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu J, Wjasow C, Backer JM. Regulation of the p85/p110α phosphatidylinositol 3′-kinase. J Biol Chem. 1998;273:30199–203.

    Article  CAS  PubMed  Google Scholar 

  110. Shekar SC, Wu H, Fu Z, Yip S-C, Nagajyothi, Cahill SM, Girvin ME, Backer JM. Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. J Biol Chem. 2005;280:27850–5.

    Article  CAS  PubMed  Google Scholar 

  111. Fu Z, Aronoff-Spencer E, Wu H, Gerfen GJ, Backer JM. The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Arch Biochem Biophys. 2004;432:244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Terauchi Y, Tsuji Y, Satoh S, Minoura H, Murakami K, Okuno A, Inukai K, Asano T, Kaburagi Y, Ueki K, Nakajima H, Hanafusa T, Matsuzawa Y, Sekihara H, Yin Y, Barrett JC, Oda H, Ishikawa T, Akanuma Y, Komuro I, Suzuki M, Yamamura K, Kodama T, Suzuki H, Kadowaki T. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nat Genet. 1999;21:230–5.

    Article  CAS  PubMed  Google Scholar 

  113. Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85α regulatory subunit. Mol Cell Biol. 2000;20:8035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mauvais-Jarvis F, Ueki K, Fruman DA, Hirshman MF, Sakamoto K, Goodyear LJ, Iannacone M, Accili D, Cantley LC, Kahn CR. Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest. 2000;109:141–9.

    Article  Google Scholar 

  115. Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T, Cantley LC, Kahn CR. Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem. 2003;278:48453–66.

    Article  CAS  PubMed  Google Scholar 

  116. Barbour LA, Shao J, Qiao L, Leitner W, Anderson M, Friedman JE, Draznin B. Human placental growth hormone increases expression of p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology. 2004;145:1144–50.

    Article  CAS  PubMed  Google Scholar 

  117. Cornier M-A, Bessesen DH, Gurevich I, Leitner JW, Draznin B. Nutritional up-regulation of p85α expression is an early molecular manifestation of insulin resistance. Diabetologia. 2006;49:748–54.

    Article  CAS  PubMed  Google Scholar 

  118. Giorgino F, Pedrini MT, Matera L, Smith RJ. Specific increase in p85α expression in response to dexamethazone is associated with inhibition of insulin-like growth factor-I stimulated phosphatidylinositol 3-kinase activity in cultured muscle cells. J Biol Chem. 1997;272:7455–63.

    Article  CAS  PubMed  Google Scholar 

  119. Lamia KA, Peroni OD, Kim Y-B, Rameh LE, Kahn BB, Cantley LC. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase β/ mice. Mol Cell Biol. 2004;24:5080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barbour L, Rahman SM, Gurevich I, Leitner JW, Fisher S, Roper M, Knotts T, Vo Y, Yakar S, LeRoith D, Kahn CR, Cantley L, Friedman J, Draznin B. Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem. 2005;280:37489–94.

    Article  CAS  PubMed  Google Scholar 

  121. Ueki K, Yballe CM, Brachmann SM, Vicent D, Watt JM, Kahn CR, Cantley LC. Increased insulin sensitivity in mice lacking p85β subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci U S A. 2002;99:419–24.

    Article  CAS  PubMed  Google Scholar 

  122. Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol. 2005;170:455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kirwan J, Varastehpour A, Jing M, Presley L, Shao J, Friedman JE, Catalano PM. Reversal of insulin resistance post-partum is linked to enhanced skeletal muscle insulin signaling. J Clin Endocrinol Metab. 2004;89:4678–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Draznin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Draznin, B. (2020). Molecular Mechanisms of Insulin Resistance. In: Zeitler, P., Nadeau, K. (eds) Insulin Resistance. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-25057-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25057-7_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-25055-3

  • Online ISBN: 978-3-030-25057-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics