Skip to main content

Oxidoreductases: Overview and Practical Applications

  • Chapter
  • First Online:
Biocatalysis

Abstract

In this chapter, a description of the oxidoreductases class of enzymes has been given. Further, their practical applications are discussed for the purpose of industrial utilization of these enzymes. These versatile biological catalysts belong to a large group of enzymes which catalyze oxidoreduction reactions. Oxidoreductases catalyze the exchange of electrons between the donor and acceptor molecules, in reactions involving electron transfer, proton/hydrogen extraction, hydride transfer, oxygen insertion, or other important steps. These are ubiquitous in nature and catalyze a vast range of chemical reactions with high specificity, efficiency, and selectivity. Majority of oxidoreductases are nicotinamide cofactor-dependent enzymes which have a high preference for NAD or NADP. They are further classified in six major classes which are oxidases, dehydrogenases, hydroxylases, oxygenases, peroxidases and reductases. These enzymes have various redox-active centres for performing their functions. Oxidoreductase based catalysis fits well for industrial applications due to their biodegradability, specificity and efficiency, and therefore these enzymes are currently being utilized in the field of textiles, medicine, food and for chemical synthesis. They are being applied for: lignocellulosics biotransformation, carbohydrates derivatization, food and beverage improvement, dairy applications, environment protection, organic synthesis, nanomaterial and polymer synthesis, medicinal synthesis, and for other synthetic applications. Herein, a detailed description of these applications is given. Oxidoreductases may be used as better biocatalysts to replace the toxic/expensive chemicals, save on energy/resources consumption, create novel functionalities, or reduce adverse impacts on the environment. The application of these enzymes to new manufacturing areas is important for the future growth of industrial oxidoreductase biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Hiramoto T (2004) Deodorization method. In: Google Patents

    Google Scholar 

  • Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24:125–154

    Article  CAS  PubMed  Google Scholar 

  • Alam MF, Laskar AA, Choudhary HH, Younus H (2016) Human salivary aldehyde dehydrogenase: purification, kinetic characterization and effect of ethanol, hydrogen peroxide and sodium dodecyl sulphate on the activity of the enzyme. Cell Biochem Biophys 74:307–315

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Husain Q (2018) Guar gum blended alginate/agarose hydrogel as a promising support for the entrapment of peroxidase: stability and reusability studies for the treatment of textile effluent. Int J Biol Macromol 116:463–471

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Ahmad M, Husain Q (2016) Redox mediated decolorization and detoxification of direct blue 80 by partially purified ginger (Zingiber officinale) peroxidase. Int J Environ Agri Res 2(4):19–30

    Google Scholar 

  • Ali M, Husain Q, Ahmad M (2017) Enhanced catalytic activity and stability of ginger peroxidase immobilized on amino functionalized silica coated titanium dioxide nanocomposite. Water Air Soil Poll 222:28

    Google Scholar 

  • Ali M, Husain Q, Sultana S, Ahmad M (2018) Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of reactive blue 4 dye. Chemosphere 202:198–207

    Article  CAS  PubMed  Google Scholar 

  • Alphand V, Carrea G, Wohlgemuth R, Furstoss R, Woodley JM (2003) Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 21:318–323

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Manolache S, Denes F (2003) Synthesis of polyaniline using horseradish peroxidase immobilized on plasma-functionalized polyethylene surfaces as initiator. J Appl Pol Sci 88:369–379

    Article  CAS  Google Scholar 

  • Amao Y, Watanabe T (2004) Photochemical and enzymatic synthesis of methanol from HCO3 with dehydrogenases and Zinc Porphyrin. Chem Lett 33:1544–1545

    Article  CAS  Google Scholar 

  • Andersson M, Andersson T, Adlercreutz P, Nielsen T, Hornsten EG (2002) Toward an enzyme-based oxygen scavenging laminate. Influence of industrial lamination conditions on the performance of glucose oxidase. Biotechnol Bioeng 79:37–42

    Article  CAS  PubMed  Google Scholar 

  • Anthony C (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428:2–9

    Article  CAS  PubMed  Google Scholar 

  • Balakshin MY, Evtuguin DV, Pascoal Neto C, Cavaco-Paulo A (2001) Polyoxometalates as mediators in the laccase catalyzed delignification. J Mol Catal B Enzymatic 16:131–140

    Article  CAS  Google Scholar 

  • Bannwarth M, Bastian S, Heckmann-Pohl D, Giffhorn F, Schulz GE (2004) Crystal structure of pyranose 2-oxidase from the white-rot fungus Peniophora sp. Biochemistry 43:11683–11690

    Article  CAS  PubMed  Google Scholar 

  • Bell SG, Orton E, Boyd H, Stevenson JA, Riddle A, Campbell S, Wong LL (2003) Engineering cytochrome P450cam into an alkane hydroxylase. Dalton Transac 11:2133–2140

    Article  CAS  Google Scholar 

  • Brady R, Cheng HN, Haandrikman A, Moore A, Kuo PK, McNabola W, Wheeler C, Xu ZF, Riehle R, Nguyen T (2002). Reduced molecular weight galactomannans oxidized by galactose oxidase. In: Google Patents

    Google Scholar 

  • Branchaud BP, Walsh CT (1985) Functional group diversity in enzymic oxygenation reactions catalyzed by bacterial flavin-containing cyclohexanone oxygenase. J Am Chem Soc 107:2153–2161

    Article  CAS  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem 43:788–824

    Article  CAS  Google Scholar 

  • Bugg TD (2001) Oxygenases: mechanisms and structural motifs for O 2 activation. Curr Opin Chem Biol 5:550–555

    Article  CAS  PubMed  Google Scholar 

  • Burton SG (2003a) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549

    Article  CAS  PubMed  Google Scholar 

  • Burton SG (2003b) Laccases and phenol oxidases in organic synthesis - a review. Curr Org Chem 7:1317–1331

    Article  CAS  Google Scholar 

  • Cameron MD, Aust SD (2001) Cellobiose dehydrogenase–an extracellular fungal flavocytochrome. Enzym Microb Technol 28:129–138

    Article  CAS  Google Scholar 

  • Casey R, West SI, Hardy D, Robinson DS, Wu Z, Hughes RK (1999) New frontiers in food enzymology: recombinant lipoxygenases. Trends Food Sci Technol 10:297–302

    Article  CAS  Google Scholar 

  • Chung YC, Ho ML, Chyan FL, Jiang ST (2000) Utilization of freeze-dried mackerel (Scomber australasicus) muscle proteins as a binder in restructured meat. Fisheries Sci 66:130–135

    Article  CAS  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  CAS  PubMed  Google Scholar 

  • Colonna S, Pironti V, Carrea G, Pasta P, Zambianchi F (2004) Oxidation of secondary amines by molecular oxygen and cyclohexanone monooxygenase. Tetrahedron 60:569–575

    Article  CAS  Google Scholar 

  • Conesa A, Punt PJ, Van den Hondel CA (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  CAS  PubMed  Google Scholar 

  • Dondero M, EgaÑA W, Tarky W, Cifuentes A, Torres JA (1993) Glucose oxidase/catalase improves preservation of Shrimp (Heterocarpus reedi). J Food Sci 58:774–779

    Article  CAS  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzym Microb Technol 31:907–931

    Article  Google Scholar 

  • Ellis EM (2002) Microbial aldo-keto reductases. FEMS Microbiol Lett 216:123–131

    Article  CAS  PubMed  Google Scholar 

  • Fakoussa R, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  CAS  PubMed  Google Scholar 

  • Fetzner S (2002) Oxygenases without requirement for cofactors or metal ions. App Microbiol Biotechnol 60:243–257

    Article  CAS  Google Scholar 

  • Fomenko DE, Gladyshev VN (2012) Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes. Antioxid Redox Signal 16:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest GL, Gonzalez B (2000) Carbonyl reductase. Chem Int 129:21–40

    CAS  Google Scholar 

  • Furukawa K (2000) Engineering dioxygenases for efficient degradation of environmental pollutants. Curr Opin Biotechnol 11:244–249

    Article  CAS  PubMed  Google Scholar 

  • Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7:222–229

    Article  CAS  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez LF, Hamoudi S, Belkacemi K (2012) Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 26:103–111

    Article  CAS  Google Scholar 

  • Hoeegh L (2004) Method of improving the hydration of pasta and preparation of pasta products. In: Google Patents

    Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140

    Article  CAS  Google Scholar 

  • Husain Q (2017) High yield immobilization and stabilization of oxidoreductases using magnetic nanosupports and their potential applications: an update. Current Catal 6(3):168–187

    Article  CAS  Google Scholar 

  • Husain M, Husain Q (2008) Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 38(1):1–42

    Article  CAS  Google Scholar 

  • Husain Q, Ulber R (2011) Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: a review. Crit Rev Environ Sci Technol 41(8):770–804

    Article  CAS  Google Scholar 

  • Husain Q, Husain M, Kulshrestha Y (2009) Remediation and treatment of organo-pollutants mediated by peroxidases: a review. Crit Rev Biotechnol 29(2):94–119

    Article  CAS  Google Scholar 

  • Husain Q, Karim Z, Rizvi ZA (2011) Oxidative degradation and polymerization of methyl parathion, a pesticide by using fenugreek seeds (Trigonella foenum graecum L) peroxidase. Environ Prog Sustain Energy 30(2):392–398

    Article  CAS  Google Scholar 

  • Imhoff RD, Power NP, Borrok MJ, Tipton PA (2003) General base catalysis in the urate oxidase reaction: evidence for a novel Thr-Lys catalytic diad. Biochemistry 42:4094–4100

    Article  CAS  PubMed  Google Scholar 

  • Jadan AP, Moonen MJH, Boeren S, Golovleva LA, Rietjens IMCM, Van Berkel WJH (2004) Biocatalytic potential of p-Hydroxybenzoate hydroxylase from Rhodococcus rhodnii 135 and Rhodococcus opacus 557. Adv Synth Catal 346:367–375

    Article  CAS  Google Scholar 

  • Jin Z, Su Y, Duan Y (2001) A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme. Synth Metals 122:237–242

    Article  CAS  Google Scholar 

  • Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57

    Article  CAS  PubMed  Google Scholar 

  • Kagan HM, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672

    Article  CAS  PubMed  Google Scholar 

  • Karim Z, Husain Q (2009) Redox-mediated oxidation and removal of aromatic amines from synthetic water by partially purified bitter gourd (Momordica charantia) peroxidase. Int Biodeterior Biodegradation 63(5):587–593

    Article  CAS  Google Scholar 

  • Karim Z, Husain Q (2010) Removal of anthracene from polluted water by immobilized peroxidase from Momordica charantia in batch process as well as in a continuous spiral-bed reactor. J Mol Catal B Enzym 66(3–4):302–310

    Article  CAS  Google Scholar 

  • Karim Z, Husain Q (2011) Removal of benzidine from polluted water by soluble and immobilized peroxidase in batch processes and continuous horizontal bed-reactor. Environ Technol 32:83–91

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Holmbom B, Spetz P, Mustranta A, Buchert J (2001) Reactivity of Trametes laccases with fatty and resin acids. Appl Microbiol Biotechnol 55:317–320

    Article  CAS  PubMed  Google Scholar 

  • Karmali A, Coelho J (2011) Bioconversion of D-glucose into D-glucosone by glucose 2-oxidase from Coriolus versicolor at moderate pressures. Appl Biochem Biotechnol 163:906–917

    Article  CAS  PubMed  Google Scholar 

  • Kimoto N, Yamamoto H (2004). Novel enone reductases isolated from Kluyveromyces lactis, methods for producing same, and methods for selectively reducing a carbon-carbon double bond of an Alpha, Beta-unsaturated ketone using the reductases. In: Google Patents

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–501

    Article  CAS  PubMed  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  • Kohajdová Z, Karovičová J, Schmidt Š (2009) Significance of emulsifiers and hydrocolloids in bakery industry. Acta Chimica Slovaca 2:46–61

    Google Scholar 

  • Koka R, Mehnert D, Fritsch R, Steffan W, Habermeier P, Bradbury A, Wolfschoon-Pombo A, Rose M (2004) Process for manufacturing cheeses and other dairy products and products thereof. In: Google Patents

    Google Scholar 

  • Lai YC, Lin SC (2005) Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution. Process Biochem 40:1167–1174

    Article  CAS  Google Scholar 

  • Lal GK, Turksma H, Van PK. PAM, Winkel C (1998). Debittering of olive oil. In: Google Patents

    Google Scholar 

  • Laskar AA, Alam MF, Younus H (2017) In vitro activity and stability of pure human salivary aldehyde dehydrogenase. Int J Biol Macromol 96:798–806

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  PubMed  Google Scholar 

  • Leskovac V, Trivic S, Pericin D (2002) The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2:481–494

    CAS  PubMed  Google Scholar 

  • Lütz S, Steckhan E, Liese A (2004) First asymmetric electroenzymatic oxidation catalyzed by a peroxidase. Electrochem Commun 6:583–587

    Article  CAS  Google Scholar 

  • Madhavi V, Lele S (2009) Laccase: properties and applications. BioRes 4:1694–1717

    Google Scholar 

  • Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D et al (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35(6):815–831

    Article  PubMed  CAS  Google Scholar 

  • Mason J, Briganti F, Wild J (1997) Protein engineering for improved biodegradation of recalcitrant pollutants. Persp Bioremed (Springer) 19:107–118

    Article  CAS  Google Scholar 

  • Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    Article  CAS  PubMed  Google Scholar 

  • Matto M, Husain Q (2009) Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin a layered calcium alginate-starch beads. J Hazard Mater 164(2–3):1540–1546

    Article  CAS  PubMed  Google Scholar 

  • May SW, Padgette SR (1983) Oxidoreductase enzymes in biotechnology: current status and future potential. Nat Biotech 1:677–686

    Article  CAS  Google Scholar 

  • Mayer G, Kulbe KD, Nidetzky B (2002) Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose. Appl Biochem Biotechnol 98:577–589

    Article  PubMed  Google Scholar 

  • Mikolasch A, Niedermeyer THJ, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell Salazar M, Hessel S, Jülich WD (2007) Novel cephalosporins synthesized by amination of 2, 5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem Pharma bulletin 55:412–416

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Miwa N, Kumazawa Y, Nakagoshi H, Sakaguchi S (2004). Method for modifying raw material milk and dairy product prepared by using the modified raw material milk. In: Google Patents

    Google Scholar 

  • Nanda S, Yadav JS (2003) Lipoxygenase biocatalysis: a survey of asymmetric oxygenation. J Mol Catal B: Enzymatic 26:3–28

    Article  CAS  Google Scholar 

  • Nicholas C, Lewis S (1999) Fundamentals of enzymology: the cell and molecular biology of catalytic proteins. Oxford University Press, Oxford

    Google Scholar 

  • Ose T, Watanabe K, Mie T, Honma M, Watanabe H, Yao M, Oikawa H, Tanaka I (2003) Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase. Nature 422:185–189

    Article  CAS  PubMed  Google Scholar 

  • Oubrie A (2003) Structure and mechanism of soluble glucose dehydrogenase and other PQQ-dependent enzymes. Biochim Biophys Act (BBA) Prot Proteom 1647:143–151

    Article  CAS  Google Scholar 

  • Pilone MS, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. Biocatal Biotransformation 20:145–159

    Article  CAS  Google Scholar 

  • Pollegioni L, Diederichs K, Molla G, Umhau S, Welte W, Ghisla S, Pilone MS (2002) Yeast D-amino acid oxidase: structural basis of its catalytic properties. J Mol Biol 324:535–546

    Article  CAS  PubMed  Google Scholar 

  • Poulos TL (2005) Structural and functional diversity in heme monooxygenases. Drug Metab Dispos 33:10–18

    Article  CAS  PubMed  Google Scholar 

  • Primo-Martin C, Valera R, Martinez-Anaya MA (2003) Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). J Agric Food Chem 51:4673–4679

    Article  CAS  PubMed  Google Scholar 

  • Que L, Watanabe Y (2001) Oxygenase pathways: Oxo, peroxo, and superoxo. Science 292:651–653

    Article  CAS  PubMed  Google Scholar 

  • Rasiah IA, Sutton KH, Low FL, Lin HM, Gerrard JA (2005) Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants. Food Chem 89:325–332

    Article  CAS  Google Scholar 

  • Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52:35–41

    Article  CAS  PubMed  Google Scholar 

  • Roberts SM (2004) Biocatalysts in synthetic organic chemistry. Tetrahedron 60:499–500

    Article  CAS  Google Scholar 

  • Sagui F, Chirivì C, Fontana G, Nicotra S, Passarella D, Riva S, Danieli B (2009) Laccase-catalyzed coupling of catharanthine and vindoline: an efficient approach to the bisindole alkaloid anhydrovinblastine. Tetrahedron 65:312–317

    Article  CAS  Google Scholar 

  • Santaniello E, Ferraboschi P, Grisenti P, Manzocchi A (1992) The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chem Rev 92:1071–1140

    Article  CAS  Google Scholar 

  • Schmid RD, Urlacher V (2007) Modern biooxidation: enzymes, reactions and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedmera P, Halada P, Peterbauer C, Volc J (2004) A new enzyme catalysis: 3,4-dioxidation of some aryl β-d-glycopyranosides by fungal pyranose dehydrogenase. Tetrahedron Lett 45:8677–8680

    Article  CAS  Google Scholar 

  • Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT (2018) Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim Biophys Acta 1866(2):327–347

    Article  CAS  Google Scholar 

  • Shaffiqu T, Roy JJ, Nair RA, Abraham TE (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem Biotechnol 102:315–326

    Article  PubMed  Google Scholar 

  • Sharp KH, Moody PCE, Raven EL (2003) A new framework for understanding substrate binding and functional diversity in haem peroxidases. Dalton Trans 22:4208–4215

    Article  CAS  Google Scholar 

  • Shleev SV, Khan IG, Gazaryan IG, Morozova OV, Yaropolov AI (2003) Novel laccase redox mediators: spectral, electrochemical, and kinetic properties. App Biochem Biotechnol 111:167–184

    Article  CAS  Google Scholar 

  • Shul’pin GB (2016) New trends in oxidative functionalization of carbon–hydrogen bonds: a review. Catalysts 6:50

    Article  CAS  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Spite M, Trent JO, West MB, Ahmed Y, Bhatnagar A (2004) Aldose reductase-catalyzed reduction of aldehyde phospholipids. J Biol Chem 279:53395–53406

    Article  CAS  PubMed  Google Scholar 

  • Stewart JD (2001) Dehydrogenases and transaminases in asymmetric synthesis. Curr Opin Chem Biol 5:120–129

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li T, Chen H, Zhang K, Zheng K, Mu Y, Yan G, Li W, Shen J, Luo G (2004) Selenium-containing 15-mer peptides with high glutathione peroxidase-like activity. J Biol Chem 279:37235–37240

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Kataoka K, Yamaguchi K (2000) Metal coordination and mechanism of multicopper nitrite reductase. Acc Chem Res 33:728–735

    Article  CAS  PubMed  Google Scholar 

  • Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK, Coppock DL (2002) Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Arch Biochem Biophys 405:1–12

    Article  CAS  PubMed  Google Scholar 

  • Toone EJ (2010) Advances in enzymology and related areas of molecular biology, Protein evolution, vol 75. Wiley, Hoboken, NJ

    Google Scholar 

  • Van de Velde F, Van Rantwijk F, Sheldon RA (2001) Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol 19:73–80

    Article  PubMed  Google Scholar 

  • Van den Heuvel RHH, Van den Berg WAM, Rovida S, Van Berkel WJH (2004) Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin. J Biol Chem 279:33492–33500

    Article  PubMed  CAS  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  CAS  PubMed  Google Scholar 

  • Vert M, Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van den Zee M (2001) Biorelated polymers: sustainable polymer science and technology. Kluwer, New York

    Google Scholar 

  • Webb EC (1992) Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. Academic, San Diego, CA

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  PubMed  Google Scholar 

  • Whittaker JW (2003) Free radical catalysis by galactose oxidase. Chem Rev 103:2347–2364

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry, vol 12. Academic, Burlington

    Google Scholar 

  • Xu P, Kaplan DL (2004) Horseradish peroxidase catalyzed polymerization of tyrosine derivatives for Nanoscale surface patterning. J Macromol Sci Part A 41:1437–1445

    Article  CAS  Google Scholar 

  • Xu F, Golightly EJ, Duke KR, Lassen SF, Knusen B, Christensen S, Brown KM, Brown SH, Schülein M (2001) Humicola insolens cellobiose dehydrogenase: cloning, redox chemistry, and “logic gate”-like dual functionality. Enzym Microb Technol 28:744–753

    Article  CAS  Google Scholar 

  • Yagi T, Seo BB, Di Bernardo S, Nakamaru-Ogiso E, Kao MC, Matsuno-Yagi A (2001) NADH dehydrogenases: from basic science to biomedicine. J Bioenerget Biomem 33:233–242

    Article  CAS  Google Scholar 

  • Yamazaki SI, Morioka C, Itoh S (2004) Kinetic evaluation of catalase and peroxygenase activities of tyrosinase. Biochemistry 43:11546–11553

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Eigendorf G, Stebbing D, Mansfield S, Saddler J (2002) Degradation of trilinolein by laccase enzymes. Arch Biochem Biophys 405:44–54

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Younus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younus, H. (2019). Oxidoreductases: Overview and Practical Applications. In: Husain, Q., Ullah, M. (eds) Biocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-25023-2_3

Download citation

Publish with us

Policies and ethics