Skip to main content

Magnetostratigraphy: From a Million to a Thousand Years

  • Chapter
  • First Online:
Paleoclimatology

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

  • 1755 Accesses

Abstract

Since the publication in 1600 of the book De Magnete by William Gilbert, and the measurements by magnetic observatories progressively obtained from various parts of the globe, we know that the Earth’s magnetic field is comparable to one that would be created by a bar-magnet placed at the center of the Earth and inclined by some 11° with respect to the axis of rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Isothermal remanent magnetization (IRM) is the magnetization acquired by a sample at a given temperature (most often room temperature), after application of a constant magnetic field and subsequent cancellation. Anhysteretic remanent magnetization (ARM) is obtained at room temperature through the combined action of a stationary field at a similar level to the Earth’s geomagnetic field and a strong alternative field in the same direction. The acquired magnetization is measured after cancellation of the two fields.

References

  • Andersen, K. K., et al. (2006). The greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quaternary Science Reviews, 25, 3246–3257.

    Article  Google Scholar 

  • Blunier, T., & Brook, E. J. (2001). Timing of millennial-scale climate change in antarctica and greenland during the last glacial period. Science, 291, 109–112.

    Article  CAS  Google Scholar 

  • Bond, G., et al. (1993). Correlation between climate records from North Atlantic sediments and Greenland ice. Nature, 365, 143–147.

    Article  Google Scholar 

  • Bonhommet, N., & Babkine, J. (1967). Sur la présence d’aimantation inverse dans la Chaîne des Puys. Comptes rendus des séances de l’Académie des sciences, série B, 264, 92–94.

    Google Scholar 

  • Broecker, W. S. (1998). Paleocean circulation during the last deglaciation: A bipolar see-saw? Paleoceanography, 13, 119–121.

    Article  Google Scholar 

  • Brunhes, B. (1906). Recherches sur la direction de l’aimantation des roches volcaniques. Journal de physique, V, 705–724.

    Google Scholar 

  • Cande, S. C., & Kent, D. V. (1992). A new geomagnetic polarity timescale for the late cretaceous and cenozoic. Journal of Geophysical Research, 97, 13917–13951.

    Article  Google Scholar 

  • Cande, S. C., & Kent, D. V. (1995). Revised calibration of the geomagnetic polarity timescale for the late cretaceous and cenozoic. Journal of Geophysical Research, 100, 6093–6095.

    Article  Google Scholar 

  • Channell, J. E. T., et al. (2009). Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth and Planetary Science Letters, 283, 14–23.

    Article  CAS  Google Scholar 

  • Charles, C. D., et al. (1996). Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth and Planetary Science Letters, 142, 19–27.

    Article  CAS  Google Scholar 

  • Cox, A., et al. (1963). Geomagnetic polarity epochs and pleistocene geochronometry. Nature, 198, 1049–1051.

    Google Scholar 

  • Creer, K. M., et al. (1954). The direction of the geomagnetic field in remote epochs in Great Britain. Journal of Geomagnetism and Geoelectricity, 6, 164–168.

    Article  Google Scholar 

  • Dansgaard, W., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.

    Article  Google Scholar 

  • Glatzmaier, G. A., & Roberts, P. H. (1995). A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377, 203–209.

    Article  CAS  Google Scholar 

  • Guillou, H., et al. (2004). On the age of the laschamp geomagnetic event. Earth and Planetary Science Letters, 227, 331–343.

    Article  CAS  Google Scholar 

  • Guyodo, Y., & Valet, J.-P. (1999). Global changes in intensity of the Earth’s magnetic field during the past 800 Kyr. Nature, 399, 249–252.

    Article  CAS  Google Scholar 

  • Hays, J. D., et al. (1976). Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121–1132.

    Article  CAS  Google Scholar 

  • Heirtzler, J. R., et al. (1968). Marine magnetic anomalies, geomagnetic field reversal and motions of the ocean floor and continents. Journal of Geophysical Research, 73, 2119–2136.

    Article  Google Scholar 

  • Hilgen, F. J. (1991a). Extension of the astronomically calibrated (polarity) time scale to the miocene/pliocene boundary. Earth and Planetary Science Letters, 107, 349–368.

    Article  Google Scholar 

  • Hilgen, F. J. (1991b). Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implications for the geomagnetic polarity time scale. Earth and Planetary Science Letters, 104, 226–244.

    Article  Google Scholar 

  • Hospers, J. (1953). Reversals of the main geomagnetic Field I, II, and III. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, 56, 467–491.

    Google Scholar 

  • Irving, E., & Runcorn, S. K. (1957). Analysis of the palaeomagnetism of the torridonian sandstone series of North-West Scotland. Philosophical Transactions of Royal Society, London, A250, 83–99.

    Google Scholar 

  • Johnson, N. M., et al. (1985). Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. The Journal of Geology, 93, 27–40.

    Article  Google Scholar 

  • Khramov, A. N. (1960). Palaeomagnetism and stratigraphic correlation. Gostoptechjzdat (218 p.), Leningrad. Geophys. Dept., A.N.U., Canberra.

    Google Scholar 

  • Kissel, C., et al. (2008). Millennial-scale propagation of atlantic deep waters to the glacial southern ocean. Paleocanography, 23, PA2102. https://doi.org/10.1029/2008pa001624.

  • Laj, C., & Channell, J. E. T. (2007). Geomagnetic excursions. In M. Kono (Ed.), Treatise on geophysics (Vol. 5, pp. 373–416).

    Google Scholar 

  • Laj, C., et al. (2000). North atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the laschamp event. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358, 1009–1025.

    Article  Google Scholar 

  • Laj, C., et al. (2004). High-resolution global paleointensity stack since 75 kyrs (GLOPIS-75) calibrated to absolute values. Timescales of the Geomagnetic Field (American Geophysical Union, Washington, C, 2004) Geophysical Monograph, 145, 255–265.

    Google Scholar 

  • Laj, C., et al. (2014). Dynamics of the earth magnetic field in the 10–75 kyr period comprising the Laschamp and Mono Lake excursions: New results from the French Chaîne des Puys in a global perspective. Earth and Planetary Science Letters, 387, 184–197.

    Article  CAS  Google Scholar 

  • Lowrie, W., & Alvarez, W. (1981). One hundred million years of geomagnetic polarity history. Geology, 9, 392–397.

    Article  Google Scholar 

  • Mankinen, E. A., & Dalrymple, G. B. (1979). Revised geomagnetic polarity time scale for the interval 0–5 m.y.b.p. Journal of Geophysical Research, 84, 615–626.

    Article  CAS  Google Scholar 

  • Mazaud, A., et al. (2007). Variations of the ACC-CDW during MIS3 traced by magnetic grain deposition in Midlatitude South Indian Ocean Cores: Connections with the Northern Hemisphere and with Central Antarctica. Geochemistry, Geophysics, Geosystems, 8, Q05012. https://doi.org/10.1029/2006GC001532.

    Article  Google Scholar 

  • McDougall, I. (1979). The present status of the geomagnetic polarity time scale. In M. W. McElhinny (Ed.), The earth: its origin, structure and evolution (pp. 543–566). London: Academic Press.

    Google Scholar 

  • McDougall, I., & Tarling, D. H. (1963a). Dating of reversals of the Earth’s magnetic field. Nature, 198, 1012–1013.

    Article  Google Scholar 

  • McDougall, I., & Tarling, D. H. (1963b). Dating of polarity zones in the Hawaiian Islands. Nature, 200, 54–56.

    Article  Google Scholar 

  • Opdyke, N. D., & Channell, J. E. T. (1996). Magnetic stratigraphy (346 p.). San Diego, CA: Academic Press.

    Google Scholar 

  • Opdyke, N. D., et al. (1966). Paleomagnetic Study of Antarctic Deep-Sea Cores. Science, 154, 349–357.

    Article  CAS  Google Scholar 

  • Opdyke, N. D., et al. (1974). The extension of the magnetic time scale in sediments of the Central Pacific Ocean. Earth and Planetary Science Letters, 22, 300–306.

    Article  Google Scholar 

  • Piotrowski, A. M., et al. (2005). Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science, 307, 1933–1938.

    Article  CAS  Google Scholar 

  • Renne, P. R., et al. (1994). Intercalibration of astronomical and radioisotopic time. Geology, 22, 783–786.

    Article  CAS  Google Scholar 

  • Shackleton, N. J., et al. (1990). An alternative astronomical calibration of the lower pleistocene timescale based on ODP Site 677. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 81, 251–261.

    Article  Google Scholar 

  • Stoner, J., et al. (2002). South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): Implications for inter-hemispheric correlation. Quaternary Science Reviews, 21, 1141–1151.

    Google Scholar 

  • Svensson, A., et al. (2006). The Greenland ice core chronology 2005, 15–42 ka. Part 2: Comparison to other records. Quaternary Science Reviews, 25, 3258–3267.

    Article  Google Scholar 

  • Vine, F. J., & Mathews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947–949.

    Article  Google Scholar 

  • Wagner, G., et al. (2000). Chlorine-36 evidence for the mono lake event in the summit GRIP ice core. Earth and Planetary Science Letters, 181, 1–6.

    Article  CAS  Google Scholar 

  • Wensink, H. (1966). Paleomagnetic stratigraphy of younger basalts and intercalated Plio-Pleistocene tillites in Iceland. Geologische Rundschau, 54, 364–384.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Laj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laj, C., Channell, J.E.T., Kissel, C. (2021). Magnetostratigraphy: From a Million to a Thousand Years. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_7

Download citation

Publish with us

Policies and ethics