Skip to main content

The 40K/40Ar and 40Ar/39Ar Methods

  • Chapter
  • First Online:
Paleoclimatology

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The 40K/40Ar method and its variant, 40Ar/39Ar, are based on the natural radioactive decay of 40K, one of the isotopes of potassium, in 40Ar, one of the isotopes of argon. 40K decreases in 40Ar* (the * symbol indicates that this is a radiogenic isotope) with a period of 1.25 × 109 years, according to the law of radioactive decay N = N0 e−λt. In other words, if we consider a closed system, containing at an initial time (t0) N0 atoms of 40K, then N0/2 atoms of 40K will remain in the system after 1.25 × 109 years. This gives us an indication of the geochronological application. If, in a geological sample, both the number of parent atoms remaining (40K) and the number of daughter atoms formed (40Ar*) can be measured, then it is possible to calculate the age of formation of this sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Berger, G. W., & York, D. (1981). Geothermometry from 40Ar/39Ar dating experiments. Geochimica et Cosmochimica Acta, 45, 795–811.

    Article  CAS  Google Scholar 

  • Cassignol, C., Cornette, Y., David, B., & Gillot, P. Y. (1978). Technologie potassium-argon. C.E.N., Saclay, Rapport CEA R-4802, 37 p.

    Google Scholar 

  • Cassignol, C., & Gillot, P.-Y. (1982). Range and effectiveness of unspiked potassium-argon dating: Experimental groundwork and examples. In G. S. Odin (Ed.), Numerical dating in stratigraphy (pp. 159–179). Chichester: Wiley.

    Google Scholar 

  • Charbit, S., Guillou, H., & Turpin, L. (1998). Cross calibration of K-Ar standard minerals using an unspiked Ar measurement technique. Chemical Geology, 150, 147–159.

    Article  CAS  Google Scholar 

  • Dalrymple, G. B., Alexander, E. C. Lanphere, M., & Kraker, G. P. (1981). Irradiation of samples for 40Ar/39Ar dating using the geological survey TRIGA reactor. U.S. Geological Survey Professional Paper, 1176.

    Google Scholar 

  • Dalrymple, G. B., & Lanphere, M. A. (1969). In J. Gilluly & A. O. Woodford (Eds.), Potassium-argon dating. Principles, techniques and applications to geochronology (251 p.). San Francisco, CA: W. H. Freeman and Company.

    Google Scholar 

  • Dalrymple, G. B., & Lanphere, M. A. (1974). 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochimica et Cosmochimica Acta, 38, 715–738.

    Article  CAS  Google Scholar 

  • Deino, A. L., & Potts, R. (1992). Age-probability spectra for examination of single crystal 40Ar/39Ar dating results: Examples from Olorgesailie, Southern Kenya Rift. Quaternary International, 13(14), 47–53.

    Article  Google Scholar 

  • Flish, M. (1982). Potassium-argon analysis. In G. S. Odin (Ed.), Numerical dating in stratigraphy (pp. 151–158). New York: Wiley.

    Google Scholar 

  • Fuhrmann, U., Lippolt, H., & Hess, C. J. (1987). HD-B1 biotite reference material for K-Ar Chronometry. Chemical Geology, 66, 41–51.

    CAS  Google Scholar 

  • Garner, E. L., Murphy, T. J., Gramlich, J. W., Paulsen, P. J., & Barnes, I. L. (1975). Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. Journal of Research of the National Bureau of Standards, 79A, 713–725.

    Article  CAS  Google Scholar 

  • Guillou, H., Singer, B. S., Laj, C., Kissel, C., Scaillet, S., & Jicha, B. R. (2004). On the age of the Laschamp geomagnetic excursion. Earth and Planetary Science Letters, 227(3–4), 331–343.

    Google Scholar 

  • Jicha, B. R., Singer, B. S., & Sobol, P. (2016). Re-evaluation of the ages of 40Ar/39Ar sanidine standards and super-eruptions in the western US using a Noblesse multi-collector mass spectrometer. Chemical Geology, 431, 54–66.

    Article  CAS  Google Scholar 

  • Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R. (2008). Synchronizing rock clocks of Earth history. Science, 320, 500–505.

    Article  CAS  Google Scholar 

  • Laj, C., Guillou, H., & Kissel, C. (2014). Dynamics of the earth magnetic field in the 10-75 kyr period comprising the Laschamp and Mono Lake excursions: New results from the French Chaîne des Puys in a global perspective. Earth and Planetary Science Letters, 387, 184–197.

    Article  CAS  Google Scholar 

  • Lanphere, M. A., & Dalrymple, G. B. (2000). First principles calibration of 38Ar Tracers. U.S. Geological Survey Professional Paper, 1621.

    Google Scholar 

  • Lee, J. Y., Marti, K., Severinghaus, K., Kawamura, K., Yoo, H. S., Lee, J. B., et al. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica Cosmochimica Acta, 70, 4507–4512.

    Article  CAS  Google Scholar 

  • McDougall, I., & Harrison, T. M. (1988). Geochronology and thermochronology by the 40Ar/39Ar method (p. 212). New York: Oxford University Press.

    Google Scholar 

  • McDougall, I., & Roksandic, Z. (1974). Total fusion 40Ar/39Ar ages using HIFAR reactor. Geological Society of Australia, 21, 81–89.

    Google Scholar 

  • Merrihue, C. (1965). Trace element determinations and potassium argon dating by mass spectroscopy of neutron irradiated samples. Transactions American Geophysical Union, 46, 125.

    Google Scholar 

  • Merrihue, C., & Turner, G. (1966). Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 2852–2857.

    Article  CAS  Google Scholar 

  • Min, K. W., Mundil, R., Renne, P. R., & Ludwig, K. R. (2000). A test for systematic errors in 40Ar/39Ar geochronology through comparison with U-Pb analysis of a 1.1 Ga rhyolite. Geochimica Cosmochimica Acta, 64, 73–98.

    Article  CAS  Google Scholar 

  • Mitchell, J. G. (1968). The Argon-40/Argon-39 dating in coesite-bearing and associated units of the Dora Maira Massif, Western Alps. European Journal of Mineralogy, 3, 239–262.

    Google Scholar 

  • Nier, A. O. (1950). A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Physical Review, 77, 789–793.

    Article  CAS  Google Scholar 

  • Niespolo, E. M., Rutte, D., Deino, A. L., & Renne, P. R. (2017). Intercalibration and age of the Alder Creek sanidine 40Ar/39Ar standard. Quaternary Geochronology, 39, 205–213.

    Article  Google Scholar 

  • Odin, G. S. (1982). Interlaboratory standards for dating purposes. In G. S. Odin (Ed.), Numerical dating in stratigraphy (pp. 123–158). New York: Wiley.

    Google Scholar 

  • Pereira, A., Nomade, S., Bahain, J.-J., & Piperno, M. (2017). Datation par 40Ar/39Ar sur monocristaux de feldspaths potassiques: exemple d’application sur le site pléistocène moyen ancien de Notarchirico (Basilicate, Italie). Quaternaire, 28(2), 149–154.

    Article  Google Scholar 

  • Phillips, D., Matchan, E. L., Honda, M., & Kuiper, K. F. (2017). Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUS VI) mass spectrometry. Geochimica Cosmochimica Acta, 196, 351–369.

    Article  CAS  Google Scholar 

  • Renne, P. R. (2000). In J. S. Noller, J. M. Sowers, & W. R. Lettis (Eds.), K-Ar and 40Ar/39Ar dating, in quaternary geochronology: Methods and applications. Washington, D.C.: American Geophysical Union. https://doi.org/10.1029/rf004p0077.

  • Renne, P. R., Mundil, R., Balco, G., Min, K., & Ludwig, K. R. (2010). Joint determination of 40 K decay constants and 40Ar/40K for the Fish Canyon sanidine standard and improved accuracy for 40Ar/39Ar geochronology. Geochemica et Cosmochimica Acta, 74, 5349–5367.

    Article  CAS  Google Scholar 

  • Roddick, J. C. (1983). High precision intercalibration of 40Ar-39Ar standards. Geochemical and Cosmochimical Acta, 47, 887–898.

    Article  CAS  Google Scholar 

  • Samson, S. D., & Alexander, E. C., Jr. (1987). Calibration of interlaboratory 40Ar-39Ar Dating Standard, MMhb-1. Chemical Geology, 66, 27–34.

    CAS  Google Scholar 

  • Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 5, 320–324.

    Google Scholar 

  • Turner, G., Huneke, J. C., Podosek, F. A., & Wasserburg, G. J. (1971). 40Ar-39Ar ages and cosmic ray exposure rays of apollo 14 samples. Earth and Planetary Science Letters, 12, 19–35.

    Article  CAS  Google Scholar 

  • Turner, G., Miller, J. A., & Grasty, R. L. (1966). The thermal history of the bruderheim meteorite. Earth and Planetary Science Letters, 1, 155–157.

    Article  Google Scholar 

  • Wänke, H., & König, H. (1959). Eine neue Methode zür Kalium-Argon Alterbestimmung und ihre Anwendung auf Steinmeteorite. Zeitschrift für Naturforschung A, 14a, 860–866.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Guillou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guillou, H., Nomade, S., Scao, V. (2021). The 40K/40Ar and 40Ar/39Ar Methods. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_5

Download citation

Publish with us

Policies and ethics