Skip to main content

Practical Detection of Biological Age: Why It Is not a Trivial Task

  • Chapter
  • First Online:
Biomarkers of Human Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 10))

Abstract

The determination of the “biological age” is one the most interesting problems in the biology of aging. The improvement of the biomarkers of aging is a very important problem. The necessity to use synthetic (i.e. holistic), rather than analytic (i.e. specific) measurements strongly contributes to a deeply complicated relationship between conventional biomedicine and a plethora of anti-aging interventions which are inferred from experimental studies of animals and observational studies of humans. Intrinsically holistic “omics” profiles, however, are subject to the “curse of dimensionality”, discussed in this chapter. It is expected that an increase in the reliability of biomarkers of aging would be achieved by concerted efforts of biostatisticians, who would successfully combine data-driven and knowledge-based approaches, and the biologists who would be instrumental in critically evaluating insights generated in silico and ensure a discernible biological rationale for the metrics of biological age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aviv A, Valdes AM, Spector TD (2006) Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol 35(6):1424–1429

    Article  Google Scholar 

  • Balietti M, Giuli C, Fattoretti P, Fabbietti P, Papa R, Postacchini D, Conti F (2017) Effect of a comprehensive intervention on plasma BDNF in patients with Alzheimer’s disease. J Alzheimers Dis 57:7–43

    Article  Google Scholar 

  • Balietti M, Giuli C, Conti F (2018) Peripheral blood brain-derived neurotrophic factor as a biomarker of Alzheimer’s disease: are there methodological biases? Mol Neurobiol 55(8):6661–6672

    Article  CAS  Google Scholar 

  • Bartlett JW, Frost C, Mattsson N, Skillbäck T, Blennow K, Zetterberg H, Schott JM (2012) Determining cut-points for Alzheimer’s disease biomarkers: statistical issues, methods and challenges. Biomark. Med. 6(4):391–400

    Article  CAS  Google Scholar 

  • Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton

    Google Scholar 

  • Böttcher MA, Dingli D, Werner B, Traulsen A (2018) Replicative cellular age distributions in compartmentalized tissues. J R Soc Interface 15:20180272

    Article  Google Scholar 

  • Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21(2):171–178

    Article  CAS  Google Scholar 

  • Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103(15):5923–5928

    Article  CAS  Google Scholar 

  • Eisenberg DT, Salpea KD, Kuzawa CW, Hayes MG, Humphries SE, European Atherosclerosis Research Study IIG (2011) Substantial variation in qPCR measured mean blood telomere lengths in young men from eleven European countries. Am J Hum Biol 23(2):228–231

    Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. In: Adaptive computation and machine learning series. The MIT Press

    Google Scholar 

  • Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM et al (2011) Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10(5):868–878

    Article  CAS  Google Scholar 

  • Juster RP, McEwen BS, Lupien SJ (2010) Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev 35:2–16

    Article  Google Scholar 

  • Kupershmidt I, Su QJ, Grewal A, Sundaresh S, Halperin I, Flynn J et al (2010) Ontology-based meta-analysis of global collections of high-throughput public data. PLoS ONE 5(9):e13066

    Article  Google Scholar 

  • Lara J, Cooper R, Nissan J, Ginty AT, Khaw K-T, Deary IJ et al (2015) A proposed panel of biomarkers of healthy ageing. BMC Med 13:222

    Article  Google Scholar 

  • Levada OA, Cherednichenko NV, Trailin AV, Troyan AS (2016) Plasma brain-derived neurotrophic factor as a biomarker for the main types of mild neurocognitive disorders and treatment efficacy: a preliminary study. Dis Mark 2016(4095723)

    Google Scholar 

  • Lin Y, Damjanovic A, Metter EJ, Nguyen H, Truong T, Najarro K et al (2015) Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clin Sci 128:367–377

    Article  CAS  Google Scholar 

  • Lin J, Cheon J, Brown R, Coccia M, Puterman E, Aschbacher K et al (2016) Systematic and cell-type specific telomere length changes in subsets of lymphocytes. J Immunol Res 2016(5371050)

    Google Scholar 

  • Mather KA, Jorm AF, Parslow RA, Christensen H (2009) Is telomere length a biomarker of aging? A review. J Gerontol Biol Sci 66A:202–213

    Article  Google Scholar 

  • Mayer G, Heinze G, Mischak H, Hellemons ME, Heerspink HJ, Bakker SJ et al (2011) Omics-bioinformatics in the context of clinical data. Methods Mol Biol 719:479–497

    Google Scholar 

  • McDermott JE, Wang J, Mitchell H, Webb-Robertson BJ, Hafen R, Ramey J, Rodland KD (2013) Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7(1):37–51

    Article  CAS  Google Scholar 

  • Neshatdoust S, Saunders C, Castle SM, Vauzour D, Williams C, Butler L et al (2016) High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging 4:81–93

    Article  CAS  Google Scholar 

  • Palmieri D, Cafueri G, Mongelli F, Pezzolo A, Pistoia V, Palombo D (2014) Telomere shortening and increased oxidative stress are restricted to venous tissue in patients with varicose veins: a merely local disease? Vasc Med 19:125–130

    Article  CAS  Google Scholar 

  • Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N et al (2010) Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–2210

    Article  CAS  Google Scholar 

  • Saeys Y, Inza I, Larraaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Article  CAS  Google Scholar 

  • Simm A, Nass N, Bartling B, Hofmann B, Silber RE, Navarrete Santos A (2008) Potential biomarkers of ageing. Biol Chem 389:257–265

    Article  CAS  Google Scholar 

  • Southworth LK, Owen AB, Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5:e1000776

    Article  Google Scholar 

  • Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA (2007) Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clin Cancer Res 13(18 Pt 1):5355–5360

    Article  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  CAS  Google Scholar 

  • Venet D, Dumont JE, Detours V (2011) Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7(10):e1002240

    Article  CAS  Google Scholar 

  • Veytsman B, Wang L, Cui T, Bruskin S, Baranova A (2014) Distance-based classifiers as potential diagnostic and prediction tools for human diseases. BMC Genom 15(Suppl 12):S10

    Article  Google Scholar 

  • Vijg J, Kennedy BK (2016) The essence of aging. Gerontology 62(4):381–385

    Article  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    Article  CAS  Google Scholar 

  • Xia X, Chen W, McDermott J, Han JJ (2017) Molecular and phenotypic biomarkers of aging. F1000Research 6:860

    Article  Google Scholar 

  • Yashin AI, Jazwinski SM (2015) Aging and health—a systems biology perspective. In: Interdisciplinary topics in gerontology, vol 40. Karger, Basel

    Google Scholar 

Download references

Acknowledgements

AB is grateful for great discussions of biomarker concepts with many colleagues, with most important thoughtful contributions being made by Prof. Eytan Domany (Weizmann Institute of Science, Israel) and Prof. Alessandro Giuliani (Istituto Superiore di Sanità, Italy). AB and TC acknowledge an important contribution of Dr. Ganiraju Manyam (The UT MD Anderson Cancer, USA) who developed an initial pipeline for distance analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ancha Baranova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veytsman, B., Cui, T., Baranova, A. (2019). Practical Detection of Biological Age: Why It Is not a Trivial Task. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_2

Download citation

Publish with us

Policies and ethics