Skip to main content

On the Kinematics of the Last Wigner Particle

  • Conference paper
  • First Online:
Classical and Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

Abstract

Wigner’s particle classification provides for ‘continuous spin’ representations of the Poincaré group, corresponding to a class of (as yet unobserved) massless particles. Rather than building their induced realizations by use of “Wigner rotations” in the textbooks’ way, here we exhibit a scalar-like first-quantized form of those (bosonic) Wigner particles directly, by combining wave equations proposed by Wigner long ago with a recent prequantized treatment employing Poisson structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since \((WP) = 0\) and \((PP) \ge 0\) together imply that \((WW) \le 0\).

  2. 2.

    In the “active transformation” view [19, Sect. 3.3].

  3. 3.

    We use open-faced type for the operators on Hilbert space corresponding to geometrical generators.

  4. 4.

    Here called w, since it will be seen to be an avatar of the PL vector.

  5. 5.

    For definiteness, we opted for the upper sign in (12.10d); taking the lower one amounts to changing the sign of \(\kappa \) only.

  6. 6.

    “... alle diese Gleichungssysteme, sofern sie widerspruchsfrei sind, äquivalent sind” [24].

  7. 7.

    The most general transformation fixing a null direction decomposes into a null rotation (belonging to a two-parameter set), a rotation and a boost. The four of them together constitute a Borel subgroup of the Lorentz group; the last two have as invariant directions those of \(\varvec{k}\) and the antipodal \(-\varvec{k}\); the boost does not leave k itself invariant.

  8. 8.

    Or by \(K^a = -\frac{1}{2} \sigma ^a\) and \(L^a = -\frac{i}{2} \sigma ^a\). In the usual terminology, \(K^a = \frac{1}{2} \sigma ^a\) and \(K^a = -\frac{1}{2} \sigma ^a\) correspond to the \(D(0,\frac{1}{2} )\) and \(D(\frac{1}{2} ,0)\) spinor representations respectively, according to [19, Chap. 8].

References

  1. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939). https://doi.org/10.2307/1968551

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. B. Schroer, Wigner’s infinite spin representations and inert matter. Eur. Phys. J. C 77, 362 (2017). https://doi.org/10.1140/epjc/s10052-017-4903-9

    Article  ADS  Google Scholar 

  3. P. Schuster, N. Toro, On the theory of continuous spin particles: wavefunctions and soft-factor scattering amplitudes. JHEP 1309, 104 (2013). https://doi.org/10.1007/JHEP09(2013)104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. P. Schuster, N. Toro, On the theory of continuous-spin particles: helicity correspondence in radiation and forces. JHEP 1309, 105 (2013). https://doi.org/10.1007/JHEP09(2013)105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P. Schuster, N. Toro, Continuous-spin particle field theory with helicity correspondence. Phys. Rev. D 91, 025023 (2015). https://doi.org/10.1103/PhysRevD.91.025023

    Article  ADS  Google Scholar 

  6. X. Bekaert, M. Najafizadeh, M.R. Setare, A gauge field theory of fermionic continuous-spin particles. Phys. Lett. B 760, 320–323 (2016). https://doi.org/10.1016/j.physletb.2016.07.005

    Article  ADS  MATH  Google Scholar 

  7. X. Bekaert, E. Skvortsov, Elementary particles with continuous spin. Int. J. Mod. Phys. A 32, 1730019 (2017). https://doi.org/10.1142/S0217751X17300198

    Article  ADS  MATH  Google Scholar 

  8. M. Najafizadeh, Modified Wigner equations and continuous spin gauge field. Phys. Rev. D 97, 065009 (2018). https://doi.org/10.1103/PhysRevD.97.065009

    Article  ADS  MathSciNet  Google Scholar 

  9. M.V. Khabarov, YuM Zinoviev, Infinite (continuous) spin fields in the frame-like formalism. Nucl. Phys. B 928, 182–216 (2018). https://doi.org/10.1016/j.nuclphysb.2018.01.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. I.L. Buchbinder, V.A. Krykhtin, H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field. Phys. Lett. B 785, 315–319 (2018). https://doi.org/10.1016/j.physletb.2018.07.070

    Article  ADS  MATH  Google Scholar 

  11. K.-H. Rehren, Pauli-Lubański limit and stress-energy tensor for infinite-spin fields. JHEP 1711, 130 (2017). https://doi.org/10.1007/JHEP11(2017)130

    Article  ADS  MATH  Google Scholar 

  12. J. Mund, K.-H. Rehren, B. Schroer, Helicity decoupling in the massless limit of massive tensor fields. Nucl. Phys. B 924, 699–727 (2017). https://doi.org/10.1016/j.nuclphysb.2017.09.022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J.M. Gracia-Bondía, F. Lizzi, J.C. Várilly, P. Vitale, The Kirillov picture for the Wigner particle. J. Phys. A. 51, 255203 (2018). https://doi.org/10.1088/1751-8121/aac3b3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. McKerrell, Canonical representations for massless particles and zero-mass limits of the helicity representation. Proc. R. Soc. Lond. A 285, 287–296 (1965). https://doi.org/10.1098/rspa.1965.0104

    Article  ADS  MATH  Google Scholar 

  15. J.S. Lomont, H.E. Moses, Reduction of reducible representations of the infinitesimal generators of the proper orthochronous inhomogeneous Lorentz group. J. Math. Phys. 8, 837–850 (1967). https://doi.org/10.1063/1.1705287

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Schwinger, Particles, Sources and Fields, vol. 1 (Addison-Wesley, Reading, MA, 1970)

    MATH  Google Scholar 

  17. J.F. Cariñena, J.M. Gracia-Bondía, J.C. Várilly, Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23, 901–933 (1990). https://doi.org/10.1088/0305-4470/23/6/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A.P. Balachandran, G. Marmo, A. Simoni, A. Stern, F. Zaccaria, On a classical description of massless particles, in Proceedings of the 1992 ISAQTP–Shanxi, ed. by J.Q. Liang, M.L. Wang, S.N. Qiao, D.C. Su (1993), pp. 396–402

    Google Scholar 

  19. R.U. Sexl, H.K. Urbantke, Relativity, Groups, Particles (Springer, Vienna, 2001). https://doi.org/10.1007/978-3-7091-6234-7

    Book  MATH  Google Scholar 

  20. E.P. Wigner, Relativistic invariance and quantum phenomena. Rev. Mod. Phys. 29, 255–268 (1957). https://doi.org/10.1103/RevModPhys.29.255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. L.J. Boya, J.F. Cariñena, M. Santander, On the continuity of the boosts for each orbit. Commun. Math. Phys. 37, 331–334 (1974). https://doi.org/10.1007/BF01645946

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. Flato, D. Sternheimer, C. Frønsdal, Difficulties with massless particles? Commun. Math. Phys. 90, 563–573 (1983). https://doi.org/10.1007/BF01216186

    Article  ADS  MathSciNet  Google Scholar 

  23. V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. 34, 211–223 (1948). https://doi.org/10.1073/pnas.34.5.211

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. E.P. Wigner, Relativistische Wellengleichungen. Z. Phys. 124, 665–684 (1948). https://doi.org/10.1007/BF01668901

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E.P. Wigner, Invariant quantum mechanical equations of motion, in Theoretical Physics Lectures, ed. by A. Salam (International Atomic Energy Agency, Vienna, 1963), pp. 59–82

    Google Scholar 

  26. X. Bekaert, J. Mourad, The continuous spin limit of higher spin field equations. JHEP 0601, 115 (2006). https://doi.org/10.1088/1126-6708/2006/01/115

    Article  ADS  MathSciNet  Google Scholar 

  27. K.-H. Rehren, Private Communication

    Google Scholar 

  28. P. Schuster, N. Toro, A gauge field theory of continuous spin particles. JHEP 1310, 061 (2013). https://doi.org/10.1007/JHEP10(2013)061

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. V.O. Rivelles, Remarks on a gauge theory for continuous spin particles. Eur. Phys. J. C 77, 433 (2017). https://doi.org/10.1140/epjc/s10052-017-4927-1

    Article  ADS  Google Scholar 

  30. R. Penrose, W. Rindler, Spinors and Spacetime, vol. 1 (Cambridge University Press, Cambridge, 1984)

    Book  Google Scholar 

  31. K. Hirata, Quantization of massless fields with continuous spin. Prog. Theor. Phys. 58, 652–666 (1977). https://doi.org/10.1143/PTP.58.652

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. Yngvason, Zero-mass infinite spin representations of the Poincaré group and quantum field theory. Commun. Math. Phys. 18, 195–203 (1970). https://doi.org/10.1007/BF01649432

    Article  ADS  MATH  Google Scholar 

  33. J.S. Lomont, H.E. Moses, Simple realizations of the infinitesimal generators of the proper orthochronous inhomogeneous Lorentz group for mass zero. J. Math. Phys. 3, 405–408 (1962). https://doi.org/10.1063/1.1724240

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. U.H. Niederer, L. O’Raifeartaigh, Realizations of the unitary representations of the inhomogeneous space-time groups I. Fortschr. Phys. 22, 111–129 (1974). https://doi.org/10.1002/prop.19740220302

    Article  MathSciNet  Google Scholar 

  35. M. Asorey, L.J. Boya, J.F. Cariñena, Covariant representations in a fibre bundle framework. Rep. Math. Phys. 21, 391–404 (1985). https://doi.org/10.1016/0034-4877(85)90040-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. Weinberg, The Quantum Theory of Fields I (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  37. J. Mund, String-localized covariant quantum fields, in Rigorous Quantum Field Theory, ed. by A.B. de Monvel, D. Buchholz, D., Iagolnitzer, U. Moschella (Birkhäuser, Boston, 2007), pp. 199–212. https://doi.org/10.1007/978-3-7643-7434-1_14

Download references

Acknowledgements

A report by Alejandro Jenkins of a conversation with Mark Wise set this work in motion. We are grateful to Alejandro, as well as to Fedele Lizzi and Patrizia Vitale, for discussions on the gyroscope property, and to Karl-Henning Rehren for most useful remarks about the equations by Wigner. We thank Daniel Solís for checking App. B and a useful observation. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 690575. JMG-B received funding from Project FPA2015–65745–P of MINECO/Feder, and acknowledges the support of the COST action QSPACE. JCV received support from the Vicerrectoría de Investigación of the Universidad de Costa Rica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Gracia-Bondía .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Poincaré Group Conventions

Our metric on the Minkowski space \(\mathbb {M}\) is mostly-negative. The inner product of two vectors \(x \equiv x^\mu \), \(p \equiv p^\nu \) of spacetime is denoted with parentheses: \((xp) = x^\mu p_\mu \). When (we hope) it does not cause confusion, we often write \(p^2 = (pp)\), say.

The Lie algebra \(\mathfrak {p}\) of \(\mathcal {P}\) has a basis of ten elements \(\{P^0,P^a,L^a,K^a : a = 1,2,3\}\), corresponding respectively to time translations, space translations, rotations and boosts. The commutation relations for the Lorentz subgroup are as follows:

$$\begin{aligned}{}[L^a,L^b] = \varepsilon ^{ab}{}_{\!c}\, L^c, \qquad [L^a,K^b] = \varepsilon ^{ab}{}_{\!c}\, K^c, \qquad [K^a,K^b] = -\varepsilon ^{ab}{}_{\!c}\, L^c. \end{aligned}$$

The commutation relations are realizedFootnote 8 by \(K^a = \frac{1}{2} \sigma ^a\) and \(L^a = -\frac{i}{2} \sigma ^a\).

In the real four-dimensional representation:

$$\begin{aligned} J^{01}&\equiv K^1 = \begin{pmatrix} &{} 1 &{}&{} \\ 1 &{}&{}&{} \\ &{}&{} 0 &{} \\ &{}&{}&{} 0 \end{pmatrix}; \quad J^{02} \equiv K^2 = \begin{pmatrix} &{}&{} 1 &{} \\ &{} 0 &{}&{} \\ 1 &{}&{}&{} \\ &{}&{}&{} 0 \end{pmatrix}; \quad J^{03} \equiv K^3 = \begin{pmatrix} &{}&{}&{} 1 \\ &{}&{} 0 &{} \\ &{} 0 &{}&{} \\ 1 &{}&{}&{} \end{pmatrix}; \\ J^{23}&\equiv L^1 = \begin{pmatrix} 0 &{}&{}&{} \\ &{} 0 &{}&{} \\ &{}&{}&{} -1 \\ &{}&{} 1 &{} \end{pmatrix}; J^{31} \equiv L^2 = \begin{pmatrix} 0 &{}&{}&{} \\ &{}&{}&{} 1 \\ &{}&{} 0 &{} \\ &{} -1 &{}&{} \end{pmatrix}; J^{12} \equiv L^3 = \begin{pmatrix} 0 &{}&{}&{} \\ &{}&{} -1 &{} \\ &{} 1 &{}&{} \\ &{}&{}&{} 0 \end{pmatrix}, \end{aligned}$$

with the same commutation relations. Remark that

$$\begin{aligned} (L^1 + K^2)^2 = \begin{pmatrix} 1 &{}&{}&{} -1 \\ &{} 0 &{}&{} \\ &{}&{} 0 &{} \\ 1 &{}&{}&{} -1 \end{pmatrix} = (L^2 - K^1)^2 \end{aligned}$$

and \((L^1 + K^2)^3 = (L^2 - K^1)^3 = 0\).

It is advisable to pull these generators together in matrix form:

$$ J^{\mu \nu } = \begin{pmatrix} &{} K^1 &{} K^2 &{} K^3 \\ -K^1 &{}&{} L^3 &{} -L^2 \\ -K^2 &{} - L^3 &{}&{} L^1 \\ -K^3 &{} L^2 &{} -L^1 &{} \end{pmatrix} \quad \text {or}\quad J_{\mu \nu } = \begin{pmatrix} &{} -K^1 &{} -K^2 &{} -K^3 \\ K^1 &{}&{} L^3 &{} -L^2 \\ K^2 &{} - L^3 &{}&{} L^1 \\ K^3 &{} L^2 &{} -L^1 &{} \end{pmatrix}. $$

The general expression is \((J_{\rho \sigma })^\alpha _{\;\beta } = \delta ^\alpha _\rho \,g_{\sigma \beta } - \delta ^\alpha _\sigma \,g_{\rho \beta }\), and the commutation relations are summarized as:

$$\begin{aligned}{}[J_{\rho \sigma }, J_{\mu \nu }] = - g_{\rho \mu }J_{\sigma \nu } - g_{\sigma \nu } J_{\rho \mu } + g_{\sigma \mu }J_{\rho \nu } + g_{\rho \nu }J_{\sigma \mu }. \end{aligned}$$
(12.16)

The dual tensor:

$$ J^{*\rho \mu } := -\tfrac{1}{2} \varepsilon ^{\rho \mu \nu \tau } J_{\nu \tau } = \begin{pmatrix} &{} -L^1 &{} -L^2 &{} -L^3 \\ L^1 &{}&{} K^3 &{} -K^2 \\ L^2 &{} - K^3 &{}&{} K^1 \\ L^3 &{} K^2 &{} -K^1 &{} \end{pmatrix} $$

plays a role in the theory of the WP. Notice that \(\varvec{K} \cdot \varvec{L} = \frac{1}{2} J_{\rho \mu } J^{*\rho \mu }\) is a relativistic invariant; as is \(\varvec{K}^2 - \varvec{L}^2 = \frac{1}{2} J_{\rho \mu } J^{\rho \mu } = -\frac{1}{2} J^*_{\rho \mu } J^{*\rho \mu }\). These are just the Casimirs of the Lorentz group. A generic infinitesimal Lorentz transformation is of the form

$$ \varLambda \simeq 1 + \tfrac{1}{2} \omega ^{\rho \sigma } J_{\rho \sigma } \,, \quad \text {or}\quad \varLambda ^\mu {}_{\!\nu } = \delta ^\mu _\nu + \omega ^\mu {}_{\!\nu } \,, $$

where \(\omega ^{\rho \sigma }\) must be skewsymmetric.

The \(P^\mu \) mutually commute. The remaining nonvanishing commutation relations for \(\mathcal {P}\) are given by:

$$ [L^a, P^b] = \varepsilon ^{ab}{}_{\!c}\, P^c, \quad [K^a, P^b] = -\delta ^{ab} P^0, \quad [K^a, P^0] = -P^a; $$

that is, \([J^{\kappa \rho }, P^\mu ] = g^{\mu \rho } P^\kappa - g^{\mu \kappa } P^\rho \).

Let \(U(\varLambda )\) be the unitary operator acting on one-particle states, corresponding to a Lorentz transformation \(\varLambda \). As discussed for instance in [36, Sect. 2.4], one finds that

$$ U^\dagger (\varLambda ) \,\mathbb {P}^\mu \, U(\varLambda ) = \varLambda ^\mu {}_{\!\nu } \,\mathbb {P}^\nu ; \quad U^\dagger (\varLambda ) \,\mathbb {J}^{\mu \nu }\, U(\varLambda ) = \varLambda ^\mu {}_{\!\rho } \varLambda ^\nu {}_{\!\sigma } \,\mathbb {J}^{\rho \sigma }, $$

where by \(\mathbb {P}\) and \(\mathbb {J} = \{\mathbb {K},\mathbb {L}\}\) we denote hermitian generators on Hilbert space, with commutation relations:

$$ [\mathbb {L}^a, \mathbb {L}^b] = i\varepsilon ^{ab}{}_{\!c}\, \mathbb {L}^c; \quad [\mathbb {L}^a, \mathbb {K}^b] = i\varepsilon ^{ab}{}_{\!c}\, \mathbb {K}^c; \quad [\mathbb {K}^a, \mathbb {K}^b] = -i\varepsilon ^{ab}{}_{\!c}\, \mathbb {L}^c; $$

that is, (12.16) leads to

$$ [\mathbb {J}_{\rho \sigma }, \mathbb {J}_{\mu \nu }] = i\bigl ( -g_{\rho \mu } \mathbb {J}_{\sigma \nu } - g_{\sigma \nu } \mathbb {J}_{\rho \mu } + g_{\sigma \mu } \mathbb {J}_{\rho \nu } + g_{\rho \nu } \mathbb {J}_{\sigma \mu } \bigr ). $$

Appendix 2: The Lorentz Decompositions of Null Rotations

The unique decomposition of an arbitrary (proper orthochronous) Lorentz matrix S into the product of a rotation and a boost is well known [19, Chap. 1]. It becomes

$$\begin{aligned} S&= \begin{pmatrix} \alpha &{} \varvec{a}^t \\ \varvec{c} &{} N \end{pmatrix} = \begin{pmatrix} 1 &{} 0 \\ 0 &{} N - \varvec{c}\varvec{a}^t/(1 + \alpha ) \end{pmatrix} L_{\varvec{a}/\alpha } \\&=: \begin{pmatrix} 1 &{} 0 \\ 0 &{} N - \varvec{c}\varvec{a}^t/(1 + \alpha ) \end{pmatrix} \begin{pmatrix} \alpha &{} \varvec{a}^t \\ \varvec{a} &{} 1_3 + \frac{\varvec{a}\varvec{a}^t}{1 + \alpha } \end{pmatrix}, \end{aligned}$$

where \(\alpha ^2 = 1 + \varvec{a}^2\). Since S and \(S^t\) are Lorentz, which implies \(N\varvec{a} = \alpha \varvec{c}\), \(N^t\varvec{c} = \alpha \varvec{a}\) and \(N^t N = 1_3 + \varvec{a}\varvec{a}^t\), one checks that \(R := N - \varvec{c}\varvec{a}^t/(1 + \alpha )\) is a rotation and that \(R\varvec{a} = \varvec{c}\), and thus also \(R + R\varvec{a}\varvec{a}^t/(1 + \alpha ) = N\).

We want to decompose null rotations in \(G_p\). Note that there is an infinity of spacelike surfaces, of timelike, null or spacelike vectors, which are orbits of \(G_p\) in \(\mathbb {M}\), each isometric to the group of motions of a plane [37]. Consider those null rotations which leave invariant the standard momentum \(k = (1,0,0,1)\). Denoting when convenient \(b_1^2 + b_2^2\) by \(|b|^2\), a general null rotation fixing k is given by:

$$ S(b_1,b_2) := \begin{pmatrix} 1 + \frac{1}{2} |b|^2 &{} -b_2 &{} b_1 &{} -\frac{1}{2} |b|^2 \\ -b_2 &{} 1 &{} 0 &{} b_2 \\ b_1 &{} 0 &{} 1 &{} -b_1 \\ \frac{1}{2} |b|^2 &{} -b_2 &{} b_1 &{} 1 - \frac{1}{2} |b|^2 \end{pmatrix} =: \begin{pmatrix} \alpha &{} \varvec{a}^t \\ \varvec{c} &{} N \end{pmatrix}. $$

Simplifying further, we work out first the case \(S(0,-b)\), with \(b > 0\).

Here \(\alpha ^2 = 1 + b^2 + \frac{1}{4} b^4 = (1 + \frac{1}{2} b^2)^2\) so that \(1 + \alpha = \frac{1}{2} (4 + b^2)\), and \(S(0,-b)\) factorizes as

$$\begin{aligned}&\begin{pmatrix} 1 + \frac{1}{2} b^2 &{} b &{} 0 &{} -\frac{1}{2} b^2 \\ b &{} 1 &{} 0 &{} -b \\ 0 &{} 0 &{} 1 &{} 0 \\ \frac{1}{2} b^2 &{} b &{} 0 &{} 1 - \frac{1}{2} b^2 \end{pmatrix} = \begin{pmatrix} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} \frac{4 - b^2}{4 + b^2} &{} 0 &{} -\frac{4b}{4 + b^2} \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} \frac{4b}{4 + b^2} &{} 0 &{} \frac{4 - b^2}{4 + b^2} \end{pmatrix} \! \begin{pmatrix} 1 + \frac{1}{2} b^2 &{} b &{} 0 &{} -\frac{1}{2} b^2 \\ b &{} 1 + \frac{2b^2}{4+b^2} &{} 0 &{} -\frac{b^3}{4+b^2} \\ 0 &{} 0 &{} 1 &{} 0 \\ -\frac{1}{2} b^2 &{} -\frac{b^3}{4+b^2} &{} 0 &{} 1 + \frac{b^4}{2(4+b^2)} \end{pmatrix} \\&\quad =: RL = (R L R^{-1}) R =: L'R. \end{aligned}$$

We see clearly that R is a rotation around the y-axis, of positive angle \(\theta \) turning anticlockwise from the positive z-axis towards the positive x-axis, with \(\theta = 2\arctan (b/2)\). The velocity associated with the boost \(L'\) is:

$$ \varvec{v} = \bigl ( 2b/(2+b^2), 0, -b^2/(2+b^2) \bigr ); $$

therefore its rapidity parameter is given by \(\zeta = {\text {arcsinh}} \bigl ( \frac{1}{2} b\sqrt{4 + b^2} \bigr )\); the direction of the boost forms an angle \(\arctan (b/2)\) with the x-axis, tilted towards the negative z-axis. For small angles, it is intuitive that the boost undoes the turn effected by the rotation. The result reproduces the one indicated without proof in [32].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gracia-Bondía, J.M., Várilly, J.C. (2019). On the Kinematics of the Last Wigner Particle. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_12

Download citation

Publish with us

Policies and ethics