Skip to main content

Drosophibot: A Fruit Fly Inspired Bio-Robot

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Included in the following conference series:

Abstract

We introduce Drosophibot, a hexapod robot with legs designed based on the Common fruit fly, Drosophila melanogaster, built as a test platform for neural control development. The robot models anatomical aspects not present in other, similar bio-robots such as a retractable abdominal segment, insect-like dynamic scaling, and compliant feet segments in the hopes that more similar biomechanics will lead to more similar neural control and resulting behaviors. In increasing biomechanical modeling accuracy, we aim to gain further insight into the insect’s nervous system to inform the current model and subsequent neural controllers for legged robots.

Supported by the National Science Foundation (Grant Number: 1704436).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biological neural networks in invertebrate neuroethology and robotics. Editors: Randall D. Beer, Roy E. Ritzmann, Thomas McKenna (Academic Press, Inc., Harcourt Brace Jovanovich, 1993). SIGART Bull. 7(4), 24 (1996). https://doi.org/10.1145/264927.1066406, reviewer-Becker, Glenn

    Article  MathSciNet  Google Scholar 

  2. Ache, J.M., Matheson, T.: Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Curr. Biol. 23(15), 1418–1426 (2013). https://doi.org/10.1016/j.cub.2013.06.024

    Article  Google Scholar 

  3. Buschmann, T., Ewald, A., von Twickel, A., Buschges, A.: Controlling legs for locomotion-insights from robotics and neurobiology. Bioinspiration Biomim. 10(4), 41001 (2015). https://doi.org/10.1088/1748-3190/10/4/041001

    Article  Google Scholar 

  4. Canio, G.D., et al.: A robot leg with compliant tarsus and its neural control for efficient and adaptive locomotion on complex terrains. Artif. Life Robot. 21(3), 274–281 (2016). https://doi.org/10.1007/s10015-016-0296-3

    Article  Google Scholar 

  5. Chockley, A.S., Ratican, S., Büschges, A., Bockemühl, T.: Subgroups of femoral chordotonal organ neurons differentially affect leg movements and coordination in Drosophila melanogaster. In: Proceedings of the 13th Goettingen Meeting of the German Neuroscience Society, Goettingen, Germany (2019)

    Google Scholar 

  6. Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005

    Article  Google Scholar 

  7. Cruse, H., Schwarze, W.: Mechanisms of coupling between the ipsilateral legs of a walking insect Carausius morosus. J. Exp. Biol. 138(1), 455–469 (1988)

    Google Scholar 

  8. Delcomyn, F.: Foundations of Neurobiology. W.H. Freeman, New York (1998)

    Google Scholar 

  9. Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobot. 8 (2014). https://doi.org/10.3389/fnbot.2014.00003

  10. Hooper, S.L., et al.: Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J. Neurosci. 29(13), 4109–4119 (2009)

    Article  Google Scholar 

  11. Mendes, C.S., Bartos, I., Akay, T., Marka, S., Mann, R.S.: Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2, e00231 (2013). https://doi.org/10.7554/eLife.00231

    Article  Google Scholar 

  12. Pickard, S.C., Quinn, R.D., Szczecinski, N.S.: Simulation of the arthropod central complex: moving towards bioinspired robotic navigation control. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 370–381. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_40

    Chapter  Google Scholar 

  13. Rubeo, S., Szczecinski, N., Quinn, R.: A synthetic nervous system controls a simulated cockroach. Appl. Sci. 8(1), 6 (2017)

    Article  Google Scholar 

  14. Schneider, A., Paskarbeit, J., Schilling, M., Schmitz, J.: HECTOR, a bio-inspired and compliant hexapod robot. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS (LNAI), vol. 8608, pp. 427–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09435-9_51

    Chapter  Google Scholar 

  15. Spenko, M.J., et al.: Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25(4–5), 223–242. https://doi.org/10.1002/rob.20238

    Article  Google Scholar 

  16. Szczecinski, N.S., Bockemühl, T., Chockley, A.S., Büschges, A.: Static stability predicts the continuum of interleg coordination patterns in Drosophila. J. Exp. Biol. (2018). https://doi.org/10.1242/jeb.189142

    Article  Google Scholar 

  17. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol. Cybern. 108(1), 1–21 (2014). https://doi.org/10.1007/s00422-013-0573-3

    Article  Google Scholar 

  18. Szczecinski, N.S., et al.: Introducing MantisBot: hexapod robot controlled by a high-fidelity, real-time neural simulation. In: IEEE International Conference on Intelligent Robots and Systems, vol. 2015-Dec, pp. 3875–3881 (2015). https://doi.org/10.1109/IROS.2015.7353922

  19. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017). https://doi.org/10.1007/s00422-017-0711-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Szczecinski, N.S., Quinn, R.D.: Template for the neural control of directed stepping generalized to all legs of MantisBot. Bioinspiration Biomim. 12(4), 45001 (2017). https://doi.org/10.1088/1748-3190/aa6dd9

    Article  Google Scholar 

  21. von Twickel, A., Hild, M., Siedel, T., Patel, V., Pasemann, F.: Neural control of a modular multi-legged walking machine: simulation and hardware. Robot. Auton. Syst. 60, 227–241 (2012)

    Article  Google Scholar 

  22. Wosnitza, A., Bockemuhl, T., Dubbert, M., Scholz, H., Buschges, A.: Inter-leg coordination in the control of walking speed in Drosophila. J. Exp. Biol. 216(Pt 3), 480–491 (2013). https://doi.org/10.1242/jeb.078139

    Article  Google Scholar 

  23. Zill, S.N., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(8), 851–867 (2011). https://doi.org/10.1007/s00359-011-0647-4

    Article  Google Scholar 

  24. Zill, S.N., Schmitz, J., Chaudhry, S., Büschges, A.: Force encoding in stick insect legs delineates a reference frame for motor control. J. Neurophysiol. 108(5), 1453–1472 (2012). https://doi.org/10.1152/jn.00274.2012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goldsmith, C., Szczecinski, N., Quinn, R. (2019). Drosophibot: A Fruit Fly Inspired Bio-Robot. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics