Skip to main content

Pulse Wave Analysis Techniques

  • Chapter
  • First Online:
The Handbook of Cuffless Blood Pressure Monitoring

Abstract

Pulse wave analysis, or PWA, is a technique based on the morphological analysis of blood pressure waveforms, whose shape reflects crucial information on the properties of the arterial wall and blood pressure itself. Although the first historical developments of PWA date back to the nineteenth century, the technique started to prosper with the development of applanation tonometry in the 1960s. More recently, the approach has been increasingly applied to photoplethysmographic signals, due to the appeal in deriving blood pressure-related information from signals routinely measured in clinical settings. In this chapter, after an introduction on the historical and physiological background of PWA, a review of the waveform features most commonly encountered in the literature is given, followed by an overview of PWA-based clinical studies and an outlook on the clinical potential of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols W, O’Rourke M, Vlachopoulos C. McDonald’s blood flow in arteries: theoretical, practical and clinical principles. Boca Raton, FL: CRC; 2011.

    Google Scholar 

  2. Marey EJ. Physiologie médicale de la circulation du sang basée sur l'étude graphique. A. Delahaye; 1863.

    Google Scholar 

  3. Mahomed FA. The physiology and clinical use of the sphygmograph. Med Times Gazette. 1872;1:62.

    Google Scholar 

  4. Wellcome Collection (image credit). 2018. https://wellcomecollection.org/works/x92jruvr. Accessed Oct 2018.

  5. Riva-Rocci S. Un nuovo sfigmomanometro. Gazzetta medica di Torino. 1896;47:981–1001.

    Google Scholar 

  6. Shevchenko YL, Tsitlik JE. 90th anniversary of the development by Nikolai S. Korotkoff of the auscultatory method of measuring blood pressure. Circulation. 1996;94(2):116–8.

    Article  CAS  PubMed  Google Scholar 

  7. Salvi P. Pulse waves. How vascular hemodynamics affects blood pressure. Berlin: Springer; 2017.

    Google Scholar 

  8. Tiru B, Bloomstone JA, McGee WT. Radial artery cannulation: a review article. J Anesth Clin Res. 2012;3(5):1000209.

    Article  Google Scholar 

  9. Mitchell GF. Arterial stiffness and wave reflection: biomarkers of cardiovascular risk. Artery Res. 2009;3(2):56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    Article  PubMed  Google Scholar 

  11. McEniery CM, Cockcroft JR, Roman MJ, et al. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35(26):1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Roman MJ, Devereux RB, Kizer JR, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  13. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech. 1983;16(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  14. Chen CH, Ting CT, Nussbacher A, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  15. Kelly R. Noninvasive carotid pressure wave registration as an indicator of ascending aortic pressure. J Vasc Med Biol. 1989;1:241–7.

    Google Scholar 

  16. Matthys K, Verdonck P. Development and modelling of arterial applanation tonometry: a review. Technol Health Care. 2002;10(1):65–76.

    PubMed  Google Scholar 

  17. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38(4):932–7.

    Article  CAS  PubMed  Google Scholar 

  18. Salvi P, Lio G, Labat C, et al. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device. J Hypertens. 2004;22(12):2285–93.

    Article  CAS  PubMed  Google Scholar 

  19. Reisner A, Shaltis PA, McCombie D, Asada HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology. 2008;108(5):950–8.

    Article  PubMed  Google Scholar 

  20. Millasseau SC, Guigui FG, Kelly RP, et al. Noninvasive assessment of the digital volume pulse: comparison with the peripheral pressure pulse. Hypertension. 2000;36(6):952–6.

    Article  CAS  PubMed  Google Scholar 

  21. Millasseau SC, Ritter JM, Takazawa K, Chowienczyk PJ. Contour analysis of the photoplethysmographic pulse measured at the finger. J Hypertens. 2006;24(8):1449–56.

    Article  CAS  PubMed  Google Scholar 

  22. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1.

    Article  PubMed  Google Scholar 

  23. Sazonov E, Neuman MR, editors. Wearable sensors: fundamentals, implementation and applications. Amsterdam: Elsevier; 2014.

    Google Scholar 

  24. Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. Cham: Springer Science & Business Media; 2010.

    Book  Google Scholar 

  25. Murgo JP, Westerhof N, Giolma JP, ltobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62(1):105–16.

    Article  CAS  PubMed  Google Scholar 

  26. Karamanoglu MMAR, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  27. Miyashita H. Clinical assessment of central blood pressure. Curr Hypertens Rev. 2012;8(2):80–90.

    Article  PubMed  PubMed Central  Google Scholar 

  28. London G, Guerin A, Pannier B, Marchais S, Benetos A, Safar M. Increased systolic pressure in chronic uremia. Role of arterial wave reflections. Hypertension. 1992;20(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hausvater A, Giannone T, Sandoval YHG, et al. The association between preeclampsia and arterial stiffness. J Hypertens. 2012;30(1):17–33.

    Article  CAS  PubMed  Google Scholar 

  30. Khalil A, Jauniaux E, Harrington K. Antihypertensive therapy and central hemodynamics in women with hypertensive disorders in pregnancy. Obstet Gynecol. 2009;113(3):646–54.

    Article  PubMed  Google Scholar 

  31. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012;8(1):14–25.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chua CP, Heneghan C. Continuous blood pressure monitoring using ECG and finger photoplethysmogram. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE; 2006. p. 5117–5120.

    Google Scholar 

  33. Padilla JM, Berjano EJ, Saiz J, et al. Assessment of relationships between blood pressure, pulse wave velocity and digital volume pulse. In: Computers in cardiology, 2006. Lyon: IEEE; 2006. p. 893–6.

    Google Scholar 

  34. Wang L, Pickwell-MacPherson E, Liang YP, Zhang YT. Noninvasive cardiac output estimation using a novel photoplethysmogram index. In: Proceedings of 31st IEEE EMBS, 2009. p. 1746–1749.

    Google Scholar 

  35. Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci. 2002;103(4):371–7.

    Article  CAS  Google Scholar 

  36. Takazawa K. Clinical usefulness of the second derivative of a plethysmogram (acceleration plethysmogram). J Cardiol. 1993;23:207–17.

    Google Scholar 

  37. Takazawa KTN, Fujita M, Matsuoka O, et al. Assessment of vasocative agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension. 1998;32:365–70.

    Article  CAS  PubMed  Google Scholar 

  38. Mukkamala R, Hahn JO. Toward ubiquitous blood pressure monitoring via pulse transit time: predictions on maximum calibration period and acceptable error limits. IEEE Trans Biomed Eng. 2018;65(6):1410–20.

    Article  PubMed  Google Scholar 

  39. Mukkamala R, Hahn JO, Inan OT, et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng. 2015;62(8):1879–901.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheng H-M, Lang D, Tufanaru C, Pearson A. Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol. 2013;167(5):1867–76.

    Article  PubMed  Google Scholar 

  41. Cheng HM, Chuang SY, Wang JJ, et al. Prognostic significance of mechanical biomarkers derived from pulse wave analysis for predicting long-term cardiovascular mortality in two population-based cohorts. Int J Cardiol. 2016;215:388–95.

    Article  PubMed  Google Scholar 

  42. Bortolotto LA, Blacher J, Kondo T, et al. Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am J Hypertens. 2000;13:165–71.

    Article  CAS  PubMed  Google Scholar 

  43. Baek HJ, Kim JS, Kim YS, et al.. Second derivative of photoplethysmography for estimating vascular aging. In: Information technology applications in biomedicine, 2007. ITAB 2007. 6th International Special Topic Conference on IEEE; 2007. p. 70–72.

    Google Scholar 

  44. Hashimoto J, Chonan K, Aoki Y, et al. Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors. J Hypertens. 2002;20(12):2415–22.

    Article  CAS  PubMed  Google Scholar 

  45. Hashimoto J, Watabe D, Kimura A, et al. Determinants of the second derivative of the finger photoplethysmogram and brachial-ankle pulse-wave velocity: the Ohasama study. Am J Hypertens. 2005;18(4):477–85.

    Article  PubMed  Google Scholar 

  46. Takada H, Washino K, Harrell JS, Iwata H. Acceleration plethysmography to evaluate aging effect in cardiovascular system. Using new criteria of four wave patterns. Med Prog Technol. 1996;21(4):205–10.

    Article  PubMed  Google Scholar 

  47. Imanaga I, Hara H, Koyanagi S, Tanaka K. Correlation between wave components of the second derivative of plethysmogram and arterial distensibility. Jpn Heart J. 1998;39:775–84.

    Article  CAS  PubMed  Google Scholar 

  48. Simek J, Wichterle D, Melenovsky V, et al. Second derivative of the finger arterial pressure waveform: an insight into dynamics of the peripheral arterial pressure pulse. Physiol Res. 2005;54(5):505.

    CAS  PubMed  Google Scholar 

  49. Proença M, Solà J, Lemay M, Verjus C. Method, apparatus and computer program for determining a blood pressure value. WO 2016 138965 A1, 9th of September 2016; 2016.

    Google Scholar 

  50. Ghamri Y, Proença M, Hofmann G, et al. Using pulse oximetry waveform analysis to track changes in blood pressure during anesthesia induction. 2019. Manuscript in preparation.

    Google Scholar 

  51. Solà J, Proença M, Braun F, et al. Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip. Curr Direct Biomed Eng. 2016;2(1):267–71.

    Article  Google Scholar 

  52. Solà J, Proença M, Schoettker P, et al. Blood pressure monitoring using a smartphone camera: performance of the OBPM technology. In: IEEE Conference on Biomedical and Health Informatics; 2018.

    Google Scholar 

  53. Pauca AL, Kon ND, O’Rourke MF. The second peak of the radial artery pressure wave represents aortic systolic pressure in hypertensive and elderly patients. Br J Anaesth. 2004;92(5):651–7.

    Article  CAS  PubMed  Google Scholar 

  54. Soderstrom S, Nyberg G, O'Rourke MF, et al. Can a clinically useful aortic pressure wave be derived from a radial pressure wave? Br J Anaesth. 2002;88:481–8.

    Article  CAS  PubMed  Google Scholar 

  55. Davies JI, Band MM, Pringle S, et al. Peripheral blood pressure measurement is as good as applanation tonometry at predicting ascending aortic blood pressure. J Hypertens. 2003;21(3):571–6.

    Article  CAS  PubMed  Google Scholar 

  56. Sharman JE, Lim R, Qasem AM, et al. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension. 2006;47(6):1203–8.

    Article  CAS  PubMed  Google Scholar 

  57. Chen CH, Nevo E, Fetics B, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation. 1997;95(7):1827–36.

    Article  CAS  PubMed  Google Scholar 

  58. Hope SA, Tay DB, Meredith IT, Cameron JD. Use of arterial transfer functions for the derivation of aortic waveform characteristics. J Hypertens. 2003;21(7):1299–305.

    Article  CAS  PubMed  Google Scholar 

  59. Hope SA, Meredith IT, Tay D, Cameron JD. Generalizability’ of a radial-aortic transfer function for the derivation of central aortic waveform parameters. J Hypertens. 2007;25(9):1812–20.

    Article  CAS  PubMed  Google Scholar 

  60. Rajani R, Chowienczyk P, Redwood S, et al. The noninvasive estimation of central aortic blood pressure in patients with aortic stenosis. J Hypertens. 2008;26(12):2381–8.

    Article  CAS  PubMed  Google Scholar 

  61. Hickson SS, Butlin M, Mir FA, et al. The accuracy of central SBP determined from the second systolic peak of the peripheral pressure waveform. J Hypertens. 2009;27(9):1784–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hope SA, Meredith IT, Cameron JD. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Clin Sci. 2004;107(2):205–11.

    Article  Google Scholar 

  63. Smulyan H, Siddiqui DS, Carlson RJ, et al. Clinical utility of aortic pulses and pressures calculated from applanated radial-artery pulses. Hypertension. 2003;42:150–5.

    Article  CAS  PubMed  Google Scholar 

  64. Zuo JL, Li Y, Yan ZJ, et al. Validation of the central blood pressure estimation by the SphygmoCor system in Chinese. Blood Press Monit. 2010;15(5):268–74.

    Article  PubMed  Google Scholar 

  65. Ding FH, Fan WX, Zhang RY, et al. Validation of the noninvasive assessment of central blood pressure by the SphygmoCor and Omron devices against the invasive catheter measurement. Am J Hypertens. 2011;24(12):1306–11.

    Article  PubMed  Google Scholar 

  66. Takazawa K, Kobayashi H, Shindo N, et al. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave. Hypertens Res. 2007;30(3):219.

    Article  PubMed  Google Scholar 

  67. Williams B, Lacy PS, Yan P, et al. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an N-point moving average method. J Am Coll Cardiol. 2011;57(8):951–61.

    Article  PubMed  Google Scholar 

  68. Garcia-Ortiz L, Recio-Rodríguez JI, Canales-Reina JJ, et al. Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertens Res. 2012;35(6):617.

    Article  PubMed  Google Scholar 

  69. Westerhof BE, Guelen I, Stok WJ, et al. Individualization of transfer function in estimation of central aortic pressure from the peripheral pulse is not required in patients at rest. J Appl Physiol. 2008;105(6):1858–63.

    Article  PubMed  Google Scholar 

  70. Shih YT, Cheng HM, Sung SH, et al. Quantification of the calibration error in the transfer function-derived central aortic blood pressures. Am J Hypertens. 2011;24(12):1312–7.

    Article  PubMed  Google Scholar 

  71. Cheng HM, Wang KL, Chen YH, et al. Estimation of central systolic blood pressure using an oscillometric blood pressure monitor. Hypertens Res. 2010;33(6):592.

    Article  PubMed  Google Scholar 

  72. Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, et al. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens. 2001;19:1037–44.

    Article  PubMed  Google Scholar 

  73. Karamanoglu MMAR, Feneley MP. Derivation of the ascending aortic-carotid pressure transfer function with an arterial model. Am J Phys Heart Circ Phys. 1996;271(6):H2399–404.

    CAS  Google Scholar 

  74. Kelly R, Fitchett D. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol. 1992;20(4):952–63.

    Article  CAS  PubMed  Google Scholar 

  75. Otsuka T, Kawada T, Katsumata M, Ibuki C. Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population. Circ J. 2006;70(3):304–10.

    Article  PubMed  Google Scholar 

  76. Otsuka T, Kawada T, Katsumata M, et al. Independent determinants of second derivative of the finger photoplethysmogram among various cardiovascular risk factors in middle-aged men. Hypertens Res. 2007;30(12):1211.

    Article  CAS  PubMed  Google Scholar 

  77. Kawada T, Otsuka T. Factor structure of indices of the second derivative of the finger Photoplethysmogram with metabolic components and other cardiovascular risk indicators. Diabetes Metab J. 2013;37(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chan GS, Middleton PM, Celler BG, et al. Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement. Physiol Meas. 2007;28(4):439.

    Article  PubMed  Google Scholar 

  79. Tusman G, Acosta CM, Pulletz S, et al. Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: an observational study. J Clin Monit Comput. 2018.

    Google Scholar 

  80. Coutrot M, Joachim J, Dépret F, et al. Noninvasive continuous detection of arterial hypotension during induction of anaesthesia using a photoplethysmographic signal: proof of concept. Br J Anaesth. 2019;122(5):605–12.

    Article  PubMed  Google Scholar 

  81. Avolio A. The finger volume pulse and assessment of arterial properties. J Hypertens. 2002;20(12):2341–43.

    Article  CAS  PubMed  Google Scholar 

  82. Avolio AP, Butlin M, Walsh A. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment. Physiol Meas. 2010;31(1):R1.

    Article  PubMed  Google Scholar 

  83. Wilkinson IB, MacCallum H, Flint L, et al. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525(1):263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Narayan O, Casan J, Szarski M, et al. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens. 2014;32(9):1727–40.

    Article  CAS  PubMed  Google Scholar 

  85. Hirata K, Kawakami M, O'Rourke MF. Pulse wave analysis and pulse wave velocity. Circ J. 2006;70(10):1231–9.

    Article  PubMed  Google Scholar 

  86. Cloud GC, Rajkumar C, Kooner J, et al. Estimation of central aortic pressure by SphygmoCor® requires intra-arterial peripheral pressures. Clin Sci. 2003;105(2):219–225.

    Article  PubMed  Google Scholar 

  87. Gunarathne A, Patel JV, Hughes EA, Lip GY. Measurement of stiffness index by digital volume pulse analysis technique: clinical utility in cardiovascular disease risk stratification. Am J Hypertens. 2008;21(8):866–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Proença .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proença, M. et al. (2019). Pulse Wave Analysis Techniques. In: Solà, J., Delgado-Gonzalo, R. (eds) The Handbook of Cuffless Blood Pressure Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-24701-0_8

Download citation

Publish with us

Policies and ethics