Skip to main content

Towards a Learning-Based Performance Modeling for Accelerating Deep Neural Networks

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernaschi, M., Bisson, M., Mastrostefano, E., Vella, F.: Multilevel parallelism for the exploration of large-scale graphs. IEEE Trans. Multi-scale Comput. Syst. 4(3), 204–216 (2018)

    Article  Google Scholar 

  2. Cho, M., Brand, D.: MEC: memory-efficient convolution for deep neural network. CoRR, abs/1706.06873 (2017)

    Google Scholar 

  3. Cianfriglia, M., Vella, F., Nugteren, C., Lokhmotov, A., Fursin, G.: A model-driven approach for a new generation of adaptive libraries. arXiv preprint arXiv:1806.07060 (2018)

  4. Cosenza, B., Durillo, J.J., Ermon, S., Juurlink, B.: Autotuning stencil computations with structural ordinal regression learning. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 287–296. IEEE (2017)

    Google Scholar 

  5. Di Girolamo, S., Vella, F., Hoefler, T.: Transparent caching for RMA systems. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1018–1027. IEEE (2017)

    Google Scholar 

  6. Falch, T.L., Elster, A.C.: Machine learning based auto-tuning for enhanced OpenCL performance portability. In: 2015 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp. 1231–1240. IEEE (2015)

    Google Scholar 

  7. Formisano, A., Gentilini, R., Vella, F.: Accelerating energy games solvers on modern architectures. In: Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms, p. 12. ACM (2017)

    Google Scholar 

  8. Fursin, G., Temam, O.: Collective optimization: a practical collaborative approach. ACM Trans. Archit. Code Optim. (TACO) 7(4), 20 (2010)

    Google Scholar 

  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  10. Hou, K., Feng, W.-c., Che, S.: Auto-tuning strategies for parallelizing sparse matrix-vector (SPMV) multiplication on multi-and many-core processors. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 713–722. IEEE (2017)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  12. Lokhmotov, A., Chunosov, N., Vella, F., Fursin, G.: Multi-objective autotuning of mobilenets across the full software/hardware stack. In: Proceedings of the 1st on Reproducible Quality-Efficient Systems Tournament on Co-designing Pareto-efficient Deep Learning, p. 6. ACM (2018)

    Google Scholar 

  13. Maron, M.E.: Automatic indexing: an experimental inquiry. J. ACM (JACM) 8(3), 404–417 (1961)

    Article  Google Scholar 

  14. Nugteren, C., Codreanu, V.: CLTune: a generic auto-tuner for OpenCL kernels. In: 2015 IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 195–202 (2015)

    Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  17. Singer, B., Veloso, M.: Learning to predict performance from formula modeling and training data. In: ICML, pp. 887–894 (2000)

    Google Scholar 

  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  19. Tasso, S., Gervasi, O., Vella, F., Cuzzocrea, A.: A simulation framework for efficient resource management on hybrid systems. In: 2015 IEEE 18th International Conference on Computational Science and Engineering, pp. 216–223. IEEE (2015)

    Google Scholar 

  20. Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel convolution using general matrix multiplication. CoRR, abs/1704.04428 (2017)

    Google Scholar 

  21. Vella, F., Bernaschi, M., Carbone, G.: Dynamic merging of frontiers for accelerating the evaluation of betweenness centrality. J. Exp. Algorithmics (JEA) 23, 1–4 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zheng, L., Chen, T.: Optimizing deep learning workloads on arm GPU with TVM. In: Proceedings of the 1st on Reproducible Quality-Efficient Systems Tournament on Co-Designing Pareto-Efficient Deep Learning, p. 3. ACM (2018)

    Google Scholar 

Download references

Acknowledgments

We thank Dividiti Inc. for the huge support on CK and NNTest and for providing hardware resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Gervasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perri, D., Sylos Labini, P., Gervasi, O., Tasso, S., Vella, F. (2019). Towards a Learning-Based Performance Modeling for Accelerating Deep Neural Networks. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics