Skip to main content

Ground-Based Cloud Images Recognition Based on GAN and PCANet

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11632))

Included in the following conference series:

Abstract

In order to improve the recognition accuracy of ground-based cloud image, a new algorithm based on deep learning is proposed. In our approach, a large number of cloud images are generated by Generative Adversarial Networks first. Then, based on the original and these generate cloud images, the deep features of cloud images are extracted automatically by multi-layer automatic sensing feature network, which increase the features description ability effectively. Finally, the Support Vector Machine (SVM) classifier is trained and the cloud image recognition is completed. Comparing with the methods such as gray level co-occurrence matrix (GLCM) and PCA with original database only, our approach combines the advantages of both GAN and PCANet, and the experiment results shows that the accuracy of cloud image recognition is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, W.Y., Liu, L., Gao, T.C., et al.: Classification of whole sky infrared cloud image using compressive sensing. J. Appl. Meteorol. Sci. 02, 231–239 (2015)

    Google Scholar 

  2. Gao, T.C., Liu, L., Zhao, S.J., et al.: The actuality and progress of whole sky cloud sounding techniques. J. Appl. Meteorol. Sci. 21(1), 101–109 (2010)

    Google Scholar 

  3. China Cloud Image. Meteorological Press, Beijing (2004)

    Google Scholar 

  4. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems, pp. 2672–2680. MIT Press (2014)

    Google Scholar 

  5. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. Computer Science (2015)

    Google Scholar 

  6. Salimans, T., Goodfellow, I., Zaremba, W., et al.: Improved techniques for training GANs (2016)

    Google Scholar 

  7. Ledig, C., Wang, Z., Shi, W., et al.: Photo-realistic single image super-resolution using a generative adversarial network, pp. 105–114 (2016)

    Google Scholar 

  8. Brock, A., Lim, T., Ritchie, J.M., et al.: Neural photo editing with introspective adversarial networks (2016)

    Google Scholar 

  9. Tu, Y., Lin, Y., Wang, J., Kim, J.-U.: Semi-supervised learning with generative adversarial networks on digital signal modulation classification. CMC: Comput. Mater. Continua 55(2), 243–254 (2018)

    Google Scholar 

  10. Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 318–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_20

    Chapter  Google Scholar 

  11. Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks, pp. 2242–2251 (2017)

    Google Scholar 

  12. Fang, W., Zhang, F., Sheng, V.S., Ding, Y.: A method for improving CNN-based image recognition using DCGAN. CMC: Comput. Mater. Continua 57(1), 167–178 (2018)

    Google Scholar 

  13. Wang, K., Zhang, R., Yin, D., et al.: Cloud detection for remote sensing image based on edge features and AdaBoost classifier. Remote Sens. Technol. Appl. 28(2), 263–268 (2013)

    Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Taigman, Y., Yang, M., Ranzato, M., et al.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708. IEEE Computer Society (2014)

    Google Scholar 

  16. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust, pp. 2892–2900 (2014)

    Google Scholar 

  17. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions, pp. 1–9 (2015)

    Google Scholar 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering, pp. 815–823 (2015)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  20. Weng, L.G., KongWB, X.I.A.M., et al.: Satellite imagery cloud fraction based on deep extreme learning machine. Comput. Sci. 45(4), 227–232 (2018)

    Google Scholar 

  21. Chan, T.H., Jia, K., Gao, S., et al.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15(7), 1667–1689 (2003)

    Article  MATH  Google Scholar 

  23. Weston, B.J., Watkins, C.: Multi-class support vector machines. Department of Computer Science, Royal Holloway, University of London (2010)

    Google Scholar 

  24. Fan, R.E., Chang, K.W., Hsieh, C.J., et al.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(9), 1871–1874 (2008)

    MATH  Google Scholar 

  25. Lin, C.-J.: LIBLINEAR-a library for large linear classification [EB/OL], 10 August 2016. https://www.csie.ntu.edu.tw/~cjlin/liblinear/

  26. Dev, S., Savoy, F.M., Lee, Y.H., et al.: WAHRSIS: a low-cost high-resolution whole sky imager with near-infrared capabilities. In: SPIE Defense + Security, 90711L (2014)

    Google Scholar 

  27. Zhang, Y.: A Course of Image Processing and Analysis. Posts & Telecom Press, Beijing (2009)

    Google Scholar 

  28. Zhou, Z.H.: Machine Learning. Tsinghua University Press, Beijing (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 61802199) and the Student Practice Innovation Training Program Fund of Nanjing University of Information Science and Technology (Grant No. 2017103000170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liling Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L., Lin, Y., Zhang, Z., Wang, S. (2019). Ground-Based Cloud Images Recognition Based on GAN and PCANet. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11632. Springer, Cham. https://doi.org/10.1007/978-3-030-24274-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24274-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24273-2

  • Online ISBN: 978-3-030-24274-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics