Skip to main content

Fertility Preservation in Women with Hematological Malignancies

  • Chapter
  • First Online:
Fertility Challenges and Solutions in Women with Cancer
  • 398 Accesses

Abstract

Different strategies for fertility preservation are available for hematological cancers. Although the tendency nowadays is to cryopreserve oocytes, ovarian tissue freezing also plays an important role since many of these patients are young. The choice of any fertility preservation technique should be based on the age of onset of the disease and the available time to complete the ovarian stimulation. Gonadotoxicity depends on several factors such as age, initial status of the ovarian reserve, type of agent, and cumulative doses. Radiotherapy also plays an important role in this kind of cancers. Currently, the use of GnRH agonists as a technique of fertility preservation is at debate, and its efficacy is still controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harel S, Fermé C, Poirot C. Management of fertility in patients treated for Hodgkin’s lymphoma. Haematologica. 2011;96:1692–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larsen EC, Müller J, Schmiegelow K, et al. Reduced ovarian function in long-term survivors of radiation and chemotherapy-treated childhood cancer. J Clin Endocrinol Met. 2003;88:5307–14.

    Article  CAS  Google Scholar 

  3. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7:535–43.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson RA, Themmen AP, Al-Qahtani A, et al. The effects of chemotherapy and long term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum Reprod. 2006;21:2583–92.

    Article  CAS  PubMed  Google Scholar 

  5. Marcello MF, Nuciforo G, Romeo R, et al. Structural and ultrastructural study of the ovary in childhood leukemia after succesful treatment. Cancer. 1990;66:2099–104.

    Article  CAS  PubMed  Google Scholar 

  6. Familiari G, Caggiati A, Nottola SA, et al. Ultrastructure of human primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum Reprod. 1993;8:2080–7.

    Article  CAS  PubMed  Google Scholar 

  7. Meirow D, Dor J, Kaufman B, et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 2007;22:1626–33.

    Article  CAS  PubMed  Google Scholar 

  8. Wo JY, Viswanathan AN. The impact or radiotherapy on fertility, pregnancy and neonatal outcomes of female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Irtan S, Orbach D, Helfre S, Sarnacki S. Ovarian transposition in prepubescent and adolescent girls with cancer. Lancet Oncol. 2013;14:e601–8.

    Article  PubMed  Google Scholar 

  10. Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of human oocyte. Hum Reprod. 2003;18:117–21.

    Article  CAS  PubMed  Google Scholar 

  11. Howell SJ, Shalet S. Gonadal damage from chemotherapy and radiotherpy. Endocrinol Metab Clin. 1998;27:927–43.

    Article  CAS  Google Scholar 

  12. De Bruin ML, Huisbrink J, Hauptmann M, et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. Blood. 2008;111:101–8.

    Article  PubMed  CAS  Google Scholar 

  13. Patrick K, Wallace WH, Critchley H. Late reproductive effects of cancer treatment in female survivors of childhood malignancy. Curr Obstet Gynecol. 2003;13:369–72.

    Article  Google Scholar 

  14. Skoetz N, Will A, Monsef I, et al. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma. Cochrane Database Syst Rev. 2017;(5):CD007941.

    Google Scholar 

  15. Loren AW, Chow E, Jacobsohn DA, Gilleece M, Halter J, Joshi S, et al. Pregnancy after hematopoietic cell transplantation: a report from the late effects working committee of the Center for International Blood and Marrow Transplant Research (CIBMTR). Biol Blood Marrow Transplant. 2011;17:157–66.

    Article  PubMed  Google Scholar 

  16. Practice Committees of American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99:37–43.

    Article  Google Scholar 

  17. Cobo A, García-Velasco JA, Coello A, et al. Oocyte vitrification as an efficient option for elective fertility preservation (EFP). Fertil Steril. 2016;105:755–64.

    Article  PubMed  Google Scholar 

  18. Alvarez RM, Ramanathan P. Fertility preservation in female oncology patients: the influence of the type of cancer on ovarian stimulation response. Hum Reprod. 2018;33:2051–9.

    CAS  PubMed  Google Scholar 

  19. von Wolff M, Bruckner T, Strowitzki T, Germeyer A. Fertility preservation: ovarian response to freeze oocytes is not affected by different malignant diseases-an analysis of 992 stimulations. J Assist Reprod Genet. 2018;35:1713–9.

    Article  Google Scholar 

  20. Cobo A, García-Velasco J, Domingo J, et al. Elective and onco-fertility preservation: factors related to IVF outcomes. Hum Reprod. 2018;33:2222–31.

    Article  CAS  PubMed  Google Scholar 

  21. American Society of Clinical Oncology. Recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24:2917–31.

    Article  Google Scholar 

  22. Lambertini M, Horicks F, Del Mastro L, et al. Ovarian protection with gonadotropin-releasing hormone agonists during chemotherapy in cancer patients: from biological evidence to clinical application. Cancer Treat Rev. 2019;72:65–77.

    Article  CAS  PubMed  Google Scholar 

  23. Oktay K, Harvey BE, Partridge AH, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36:1994–2001.

    Article  PubMed  Google Scholar 

  24. Muñoz M, Santaballa A, Seguí MA, et al. SEOM clinical guideline of fertility preservation and reproduction in cancer patients (2016). Clin Transl Oncol. 2016;18:1229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blumenfeld Z, Evron A. Endocrine prevention of chemotherapy-induced ovarian failure. Curr Opin Obstet Gynecol. 2016;28:223–9.

    Article  PubMed  Google Scholar 

  26. Elgindy E, Sibai H, Abdelghani A, et al. Protecting ovaries during chemotherapy through gonad suppression: a systematic review and metaanalysis. Obstet Gynecol. 2015;126:187–95.

    Article  CAS  PubMed  Google Scholar 

  27. Demeestere I, Brice P, Peccatori FA, et al. No evidence for the benefit of gonadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy: final long-term report of a prospective randomized trial. J Clin Oncol. 2016;34:2568–74.

    Article  CAS  PubMed  Google Scholar 

  28. Gris-Martínez JM, Trillo-Urrutia L, Gómez-Cabeza JJ, et al. Protective effect of GnRH analogues on the reproductive capacity of women with neoplasia or autoimmune disease who require chemotherapy. Final results of a phase II clinical trial. Med Clin. 2016;146:97–103.

    Article  Google Scholar 

  29. Behringer K, Thielen I, Mueller H, et al. Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial. Ann Oncol. 2012;23:1818–25.

    Article  CAS  PubMed  Google Scholar 

  30. Lambertini M, Del Mastro L, Pescio MC, et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med. 2016;14(1):1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Blumenfeld Z, Evron A. Preserving fertility when choosing chemotherapy regimens—the role of gonadotropin-releasing hormone agonists. Expert Opin Pharmacol. 2015;16:1009–20.

    Article  CAS  Google Scholar 

  32. Huser M, Smardova L, Janku P, et al. Fertility status of Hodgkin lymphoma patients treated with chemotherapy and adjuvant gonadotropin-releasing hormone analogues. J Assist Reprod Genet. 2015;32:1187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Senra JC, Roque M, Talim MCT, et al. Gonadotropin-releasing hormone agonist for ovarian protection during cancer chemotherapy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51:77–86.

    Article  CAS  PubMed  Google Scholar 

  34. Lambertini M, Dellepiane C, Viglietti G, et al. Pharmacotherapy to protect ovarian function and fertility during cancer treatment. Expert Opin Pharmacother. 2017;18:739–42.

    Article  PubMed  Google Scholar 

  35. Rabinovici J, Rothman P, Monroe SE, et al. Endocrine effects and pharmacokinetic characteristics of a potent new gonadotropin-releasing hormone antagonist (Ganirelix) with minimal histamine-releasing properties: studies in postmenopausal women. J Clin Endocrinol Metab. 1992;75:1220–5.

    CAS  PubMed  Google Scholar 

  36. Meirow D, Assad G, Dor J, et al. The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Hum Reprod. 2004;19:1294–9.

    Article  CAS  PubMed  Google Scholar 

  37. Danforth DR, Arbogast LK, Friedman CI. Acute depletion of murine primordial follicle reserve by gonadotropin-releasing hormone antagonists. Fertil Steril. 2005;83:1333–8.

    Article  CAS  PubMed  Google Scholar 

  38. Knudtson JF, Tellez M, Failor CM, et al. A combination of a GnRH antagonist and agonist for fertility preservation in an adolescent female murine model. Reprod Sci. 2017;24:1280–3.

    Article  CAS  PubMed  Google Scholar 

  39. Wen J, Feng Y, Bjorklund CC, et al. Luteinizing hormone-releasing hormone (LHRH)-I antagonist cetrorelix inhibits myeloma cell growth in vitro and in vivo. Mol Cancer Ther. 2011;10:148–58.

    Article  CAS  PubMed  Google Scholar 

  40. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17:121–55.

    Article  CAS  PubMed  Google Scholar 

  41. Bildik G, Acılan C, Sahin GN, et al. C-Abl is not actıvated in DNA damage-induced and Tap63-mediated oocyte apoptosıs in human ovary. Cell Death Dis. 2018;20(9):943.

    Article  CAS  Google Scholar 

  42. Roness H, Kashi O, Meirow D. Prevention of chemotherapy-induced ovarian damage. Fertil Steril. 2016;105:20–9.

    Article  CAS  PubMed  Google Scholar 

  43. Morita Y, Perez GI, Paris F, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6:1109–14.

    Article  CAS  PubMed  Google Scholar 

  44. Kaya H, Desdicioglu R, Sezik M, et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide and irradiation-induced ovarian damage in the rat model? Fertil Steril. 2008;89:732–5.

    Article  CAS  PubMed  Google Scholar 

  45. Gross E, Champetier C, Pointreau Y, et al. Normal tissue tolerance to external beam radiation therapy: ovaries. Cancer Radiothér. 2010;14:373–5.

    Article  CAS  PubMed  Google Scholar 

  46. Haie-Meder C, Mlika-Cabanne N, Michel G, et al. Radiotherapy after ovarian transposition: ovarian function and fertility preservation. Int J Radiat Oncol Biol Phys. 1993;25:419–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kimler BF, Briley SM, Johnson BW, et al. Radiation-induced ovarian follicle loss occurs without overt stromal changes. Reproduction. 2018;155:553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gubbala K, Laios A, Gallos J, et al. Outcomes of ovarian transposition in gynaecological cancers; a systematic review and meta-analysis. J Ovarian Res. 2014;7:69.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mossa B, Schimberni M, di Benedetto L, et al. Ovarian transposition in young women and fertility sparing. Eur Rev Med Pharmacol Sci. 2015;19:3418–25.

    CAS  PubMed  Google Scholar 

  50. Morice P, Thiam-Ba R, Castaigne D, et al. Fertility results after ovarian transposition for pelvic malignancies treated by external irradiation or brachytherapy. Hum Reprod. 1998;13:660–3.

    Article  CAS  PubMed  Google Scholar 

  51. Salih S, Albayrak S, Seo S, Stewart S, Bradley K, Kushner D. Diminished utilization of in vitro fertilization following ovarian transposition in cervical cancer patients. J Reprod Med. 2015;60:345–53.

    PubMed  PubMed Central  Google Scholar 

  52. De Vos M, Smitz J, Woodruff T. Fertility preservation in women with cancer. Lancet. 2014;384:1302–10.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cohen Y, St-Onge-St-Hilaire A, Tannus S, et al. Decreased pregnancy and live birth rates after vitrification of in vitro matured oocytes. J Assist Reprod Genet. 2018;35:1683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brambillasca F, Guglielmo MC, Coticchio G, et al. The current challenges to efficient immature oocyte cryopreservation. J Assist Reprod Genet. 2013;30:1531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Buckett WM, Chian RC, Dean NL, et al. Pregnancy loss in pregnancies conceived after in vitro oocyte maturation, conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2008;90:546–50.

    Article  PubMed  Google Scholar 

  56. Abir R, Ben-Aharon I, Garor R, et al. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod. 2016;31:750–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Domingo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domingo, J., Pellicer, A. (2020). Fertility Preservation in Women with Hematological Malignancies. In: Azim Jr, H., Demeestere, I., Peccatori, F. (eds) Fertility Challenges and Solutions in Women with Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-24086-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24086-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24085-1

  • Online ISBN: 978-3-030-24086-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics