Skip to main content

Salivary Gland

  • Chapter
  • First Online:
Practical Cytopathology

Part of the book series: Practical Anatomic Pathology ((PAP))

Abstract

The early application of needle aspiration to diagnose salivary gland lesions was documented by the 1930s. Over the past few decades, fine-needle aspiration (FNA) has developed into a widely accepted diagnostic procedure and is often the first step in the evaluation of salivary gland mass or cystic lesions. Despite the clinical utility, salivary gland FNA diagnosis remains one of the most challenging fields in cytopathology. The 2017 World Health Organization classification included at least 37 histological types of primary salivary gland tumors; many of them show remarkable overlap of cytomorphological features. In addition, metastatic tumor, reactive process, and inflammation could also form mass or cystic lesions in salivary glands. For a long time, there has been no consensus on how to report salivary gland cytopathology. The result has been inconsistent use of terminologies among institutions and individual cytopathologists. An international group of cytopathologists, surgical pathologists, and head and neck surgeons have recently outlined “Milan System for Reporting Salivary Gland Cytopathology” and corresponding atlas has been published in 2018. The main purpose of this chapter is to highlight the key points in the Milan System for Reporting Salivary Gland Cytopathology and practically important points in salivary gland FNA differential diagnoses. It cannot be overemphasized that these cytomorphological features of FNA must be interpreted in the appropriate clinical and radiological settings, including lesion site and size, speed of growth, clinical symptoms, and the patient’s age, gender, and ethnicity. Like any cytological samples, accurate salivary gland FNA diagnosis depends on adequate tissue sampling. Procedures including rapid on-site evaluation (ROSE) are critical to ensure sufficient diagnostic material.

Due to the significant overlapping among cytomorphological features of different salivary lesions, ancillary tests including immunocytochemistry and molecular tests are important in diagnosis and differential diagnoses in challenging cases. Impressive advances have been made in recent years in the understanding of the molecular pathogenesis of salivary gland tumors. These molecular changes, including several recurrent chromosome translocations, have been identified in several common subtypes of salivary gland tumors. Though validation of these newly identified genetic changes is still in progress, ancillary tests based on these genetic changes have been introduced into cytopathological practice. Immunocytochemistry, including results derived from tissue microarray studies, provides another set of diagnostic markers for more accurate classification of salivary gland tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faquin WC, Rossi ED. The Milan system for reporting salivary gland cytopathology. 1st ed. Philadelphia: Springer Press; 2018.

    Book  Google Scholar 

  2. Wang H, Fundakowski C, Khurana JS, Jhala N. Fine-needle aspiration biopsy of salivary gland lesions. Arch Pathol Lab Med. 2015;139:1491–7.

    Article  CAS  PubMed  Google Scholar 

  3. Mohammed Nur M, Murphy M. Adequacy and accuracy of salivary gland fine needle aspiration cytology. Ir J Med Sci. 2016;185:711–6.

    Article  CAS  PubMed  Google Scholar 

  4. Mallon DH, Kostalas M, MacPherson FJ, et al. The diagnostic value of fine needle aspiration in parotid lumps. Ann R Coll Surg Engl. 2013;95:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ. WHO classification of head and neck tumours. 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  6. Barnes L, Eveson JW, Reichart P, Sidransky D. WHO classification of head and neck tumours. 4th ed. Lyon: IARC Press; 2005.

    Google Scholar 

  7. Bradley PJ, Eisele DW. Salivary gland neoplasms in children and adolescents. Adv Otorhinolaryngol. 2016;78:175–81.

    PubMed  Google Scholar 

  8. Bradley PJ. Frequency and histopathology by site, major pathologies, symptoms and signs of salivary gland neoplasms. Adv Otorhinolaryngol. 2016;78:9–16.

    PubMed  Google Scholar 

  9. Vander Poorten V, Triantafyllou A, Thompson LD, et al. Salivary acinic cell carcinoma: reappraisal and update. Eur Arch Otorhinolaryngol. 2016;273:3511–31.

    Article  CAS  PubMed  Google Scholar 

  10. Bishop JA, Yonescu R, Batista D, Eisele DW, Westra WH. Most nonparotid “acinic cell carcinomas” represent mammary analog secretory carcinomas. Am J Surg Pathol. 2013;37:1053–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rooper LM, Onenerk M, Siddiqui MT, Faquin WC, Bishop JA, Ali SZ. Nodular oncocytic hyperplasia: can cytomorphology allow for the preoperative diagnosis of a nonneoplastic salivary disease? Cancer. 2017;125:627–34.

    CAS  Google Scholar 

  12. Rossi ED, Faquin WC, Baloch Z, et al. The Milan system for reporting salivary gland cytopathology: analysis and suggestions of initial survey. Cancer. 2017;125:757–66.

    Google Scholar 

  13. Kas K, Voz ML, Röijer E, et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet. 1997;15:170–4.

    Article  CAS  PubMed  Google Scholar 

  14. Bullerdiek J, Wobst G, Meyer-Bolte K, et al. Cytogenetic subtyping of 220 salivary gland pleomorphic adenomas: correlation to occurrence, histological subtype, and in vitro cellular behavior. Cancer Genet Cytogenet. 1993;65:27–31.

    Article  CAS  PubMed  Google Scholar 

  15. Voz ML, Mathys J, Hensen K, et al. Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene. 2004;23(1):179–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tessari MA, Gostissa M, Altamura S, et al. Transcriptional activation of the cyclin a gene by the architectural transcription factor HMGA2. Mol Cell Biol. 2003;23:9104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Martino I, Visone R, Wierinckx A, et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res. 2009;69:1844–50.

    Article  PubMed  CAS  Google Scholar 

  18. Stenman G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol. 2013;7(Suppl 1):S12–9.

    Article  PubMed  Google Scholar 

  19. Röijer E, Nordkvist A, Ström AK, et al. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am J Pathol. 2002;160:433–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tonon G, Modi S, Wu L, et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet. 2003;33:208–13.

    Article  CAS  PubMed  Google Scholar 

  21. Tirado Y, Williams MD, Hanna EY, et al. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin's tumors: implications for histogenesis and biologic behavior. Genes Chromosomes Cancer. 2007;46:708–15.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Z, Chen J, Gu Y, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869–7387.

    Article  CAS  PubMed  Google Scholar 

  23. Coxon A, Rozenblum E, Park YS, et al. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res. 2005;65:7137–44.

    Article  CAS  PubMed  Google Scholar 

  24. Behboudi A, Enlund F, Winnes M, et al. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer. 2006;45(5):470–81.

    Article  CAS  PubMed  Google Scholar 

  25. Jee KJ, Persson M, Heikinheimo K, et al. Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma. Mod Pathol. 2013;26(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Malik A, Maleki Z, et al. “Atypical” salivary gland fine needle aspiration: risk of malignancy and inter-institutional variability. Diagn Cytopathol. 2017;45:1088–94.

    Article  PubMed  Google Scholar 

  27. Maleki Z, Arab SE, Rossi ED, et al. “Suspicious” salivary gland fine needle aspiration: risk of malignancy and inter-institutional variability. Cancer Cytopathol. 2018;126:94–100.

    Article  PubMed  Google Scholar 

  28. Thompson LDR, Wenig BM. Diagnostic pathology: head and neck by Amirsys. 1st ed. Ambler: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  29. Wang H, Hoda RS, Faquin W, et al. Fine-needle aspiration biopsy of secondary nonlymphomatous malignancies in salivary glands: a multi-institutional study of 184 cases. Cancer Cytopathol. 2017;125:91–103.

    Article  PubMed  Google Scholar 

  30. Liu S, Parajul S, Hotchandani N, et al. Fine needle aspiration diagnosis of non-epithelial lesions of the major salivary glands. Int J Clin Exp Pathol. 2016;9:6877–86.

    CAS  Google Scholar 

  31. Zhang C, Cohen JM, Cangiarella JF, et al. Fine-needle aspiration of secondary neoplasms involving the salivary glands. A report of 36 cases. Am J Clin Pathol. 2000;113:21–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lussier C, Klijanienko J, Vielh P. Fine-needle aspiration of metastatic nonlymphomatous tumors to the major salivary glands: a clinicopathologic study of 40 cases cytologically diagnosed and histologically correlated. Cancer. 2000;90:350–6.

    Article  CAS  PubMed  Google Scholar 

  33. Nuyens M, Schüpbach J, Stauffer E, Zbären P. Metastatic disease to the parotid gland. Otolaryngol Head Neck Surg. 2006;135:844–8.

    Article  PubMed  Google Scholar 

  34. Stacchini A, Aliberti S, Pacchioni D, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231–40.

    Article  CAS  PubMed  Google Scholar 

  35. Dillon PM, Chakraborty S, Moskaluk CA, et al. Adenoid cystic carcinoma: a review of recent advances, molecular targets and clinical trials. Head Neck. 2016;38:620–7.

    Article  PubMed  Google Scholar 

  36. Mino M, Pilch BZ, Faquin WC. Expression of KIT (CD117) in neoplasms of the head and neck: an ancillary marker for adenoid cystic carcinoma. Mod Pathol. 2003;16:1224–31.

    Article  CAS  PubMed  Google Scholar 

  37. Stenman G, Sandros J, Dahlenfors R, et al. 6q- and loss of the Y chromosome--two common deviations in malignant human salivary gland tumors. Cancer Genet Cytogenet. 1986;22:283–93.

    Article  CAS  PubMed  Google Scholar 

  38. Nordkvist A, Mark J, Gustafsson H, et al. Non-random chromosome rearrangements in adenoid cystic carcinoma of the salivary glands. Genes Chromosomes Cancer. 1994;10(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  39. Skálová A, Vanecek T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010;34(5):599–608.

    PubMed  Google Scholar 

  40. Schneider V, Nobile A, Duvoisin B, Saglietti C, Bongiovanni M. Myoepithelioma of the parotid gland with extensive adipocytic metaplasia: report of a case with intriguing aspects on fine needle aspiration and p63 immunohistochemical expression. Diagn Cytopathol. 2016;44(12):1090–3.

    Article  PubMed  Google Scholar 

  41. Nagel H, Hotze HJ, Laskawi R, Chilla R, Droese M. Cytologic diagnosis of adenoid cystic carcinoma of salivary glands. Diagn Cytopathol. 1999;20(6):358–66.

    Article  CAS  PubMed  Google Scholar 

  42. Aisagbonhi OA, Tulecke MA, Wilbur DC, et al. Fine-needle aspiration of epithelial-myoepithelial carcinoma of the parotid gland with prominent adenoid cystic carcinoma-like cribriform features: avoiding a diagnostic pitfall. Am J Clin Pathol. 2016;146:741–6.

    Article  PubMed  Google Scholar 

  43. Ohtomo R, Mori T, Shibata S, et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol. 2013;26:1041–50.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu S, Schuerch C, Hunt J. Review and updates of immunohistochemistry in selected salivary gland and head and neck tumors. Arch Pathol Lab Med. 2015;139(1):55–66.

    Article  PubMed  Google Scholar 

  45. Kim JY, Yoo YS, Kwon JE, Kim HJ, Park K. Fine-needle aspiration cytology with c-kit immunocytochemical staining in the diagnosis of Warthin's tumor. Acta Cytol. 2012;56(5):474–80.

    Article  CAS  PubMed  Google Scholar 

  46. Griffith CC, Siddiqui MT, Schmitt AC. Ancillary testing strategies in salivary gland aspiration cytology: a practical pattern-based approach. Diagn Cytopathol. 2017;45(9):808–19.

    Article  PubMed  Google Scholar 

  47. Hedberg ML, Goh G, Chiosea SI, et al. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. 2016;126(1):169–80.

    Article  PubMed  Google Scholar 

  48. Darr OA, Colacino JA, Tang AL, et al. Epigenetic alterations in metastatic cutaneous carcinoma. Head Neck. 2015;37:994–1001.

    Article  PubMed  Google Scholar 

  49. El-Mofty SK, Patil S. Human papillomavirus (HPV)-related oropharyngeal nonkeratinizing squamous cell carcinoma: characterization of a distinct phenotype. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):339–45.

    Article  PubMed  Google Scholar 

  50. Park GC, Lee M, Roh JL, et al. Human papillomavirus and p16 detection in cervical lymph node metastases from an unknown primary tumor. Oral Oncol. 2012;48:1250–6.

    Article  CAS  PubMed  Google Scholar 

  51. Chiosea SI, Thompson LD, Weinreb I, et al. Subsets of salivary duct carcinoma defined by morphologic evidence of pleomorphic adenoma, PLAG1 or HMGA2 rearrangements, and common genetic alterations. Cancer. 2016;122:3136–44.

    Article  CAS  PubMed  Google Scholar 

  52. Luk PP, Weston JD, Yu B, et al. Salivary duct carcinoma: clinicopathologic features, morphologic spectrum, and somatic mutations. Head Neck. 2016;38(Suppl 1):E1838–47.

    Article  PubMed  Google Scholar 

  53. Williams L, Thompson LD, Seethala RR, et al. Salivary duct carcinoma: the predominance of apocrine morphology, prevalence of histologic variants, and androgen receptor expression. Am J Surg Pathol. 2015;39:705–13.

    Article  PubMed  Google Scholar 

  54. Simpson RH. Salivary duct carcinoma: new developments–morphological variants including pure in situ high grade lesions; proposed molecular classification. Head Neck Pathol. 2013;7(Suppl 1):S48–58.

    Article  PubMed  Google Scholar 

  55. Jaehne M, Roeser K, Jaekel T, Schepers JD, Albert N, Loning T. Clinical and immunohistologic typing of salivary duct carcinoma: a report of 50 cases. Cancer. 2005;103:2526–33.

    Article  PubMed  Google Scholar 

  56. Chiosea SI, Williams L, Griffith CC, et al. Molecular characterization of apocrine salivary duct carcinoma. Am J Surg Pathol. 2015;39:744–52.

    Article  PubMed  Google Scholar 

  57. Moriki T, Ueta S, Takahashi T, Mitani M, Ichien M. Salivary duct carcinoma: cytologic characteristics and application of androgen receptor immunostaining for diagnosis. Cancer. 2001;93:344–50.

    Article  CAS  PubMed  Google Scholar 

  58. Elsheikh TM. Cytologic diagnosis of salivary duct carcinoma. Pathol Case Rev. 2004;9:236–41.

    Article  Google Scholar 

  59. Wakely PE Jr. Oncocytic and oncocyte-like lesions of the head and neck. Ann Diagn Pathol. 2008;12(3):222–30.

    Article  PubMed  Google Scholar 

  60. Wei H, Xiaofeng H, Yang Z, Zhiyong W. The diagnosis and treatment of oncocytic carcinoma. J Craniofac Surg. 2014;25(4):e326–8.

    Article  PubMed  Google Scholar 

  61. Máximo V, Rios E, Sobrinho-Simões M. Oncocytic lesions of the thyroid, kidney, salivary glands, adrenal cortex, and parathyroid glands. Int J Surg Pathol. 2014;22:33–6.

    Article  PubMed  Google Scholar 

  62. Seethala RR. Oncocytic and apocrine epithelial myoepithelial carcinoma: novel variants of a challenging tumor. Head Neck Pathol. 2013;7(Suppl 1):S77–84.

    Article  PubMed  Google Scholar 

  63. Hang JF, Shum CH, Ali SZ, Bishop JA. Cytological features of the Warthin-like variant of salivary mucoepidermoid carcinoma. Diagn Cytopathol. 2017;45:1132–6.

    Article  PubMed  Google Scholar 

  64. Bajaj J, Gimenez C, Slim F, Aziz M, Das K. Fine-needle aspiration cytology of mammary analog secretory carcinoma masquerading as low-grade mucoepidermoid carcinoma: case report with a review of the literature. Acta Cytol. 2014;58(5):501–10.

    Article  PubMed  Google Scholar 

  65. Farhood Z, Zhan KY, Lentsch EJ. Mucinous adenocarcinoma of the salivary gland: a review of a rare tumor. Otolaryngol Head Neck Surg. 2016;154(5):875–9.

    Article  PubMed  Google Scholar 

  66. Skálová A, Weinreb I, Hyrcza M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol. 2015;39(3):338–48.

    Article  PubMed  Google Scholar 

  67. Antonescu CR, Katabi N, Zhang L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer. 2011;50(7):559–70.

    Article  CAS  PubMed  Google Scholar 

  68. Daniele L, Nikolarakos D, Keenan J, Schaefer N, Lam AK. Clear cell carcinoma, not otherwise specified/hyalinising clear cell carcinoma of the salivary gland: the current nomenclature, clinical/pathological characteristics and management. Crit Rev Oncol Hematol. 2016;102:55–64.

    Article  PubMed  Google Scholar 

  69. Jain A, Shetty DC, Juneja S, Narwal N. Molecular characterization of clear cell lesions of head and neck. J Clin Diagn Res. 2016;10(5):ZE18–23.

    PubMed  PubMed Central  Google Scholar 

  70. Yue D, Feng W, Ning C, Han LX, YaHong L. Myoepithelial carcinoma of the salivary gland: pathologic and CT imaging characteristics (report of 10 cases and literature review). Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(6):e182–7.

    Article  PubMed  Google Scholar 

  71. Gnepp DR. Mucinous myoepithelioma, a recently described new myoepithelioma variant. Head Neck Pathol. 2013;7(Suppl 1):S85–9.

    Article  PubMed  Google Scholar 

  72. Sahai K, Kapila K, Dahiya S, Verma K. Fine needle aspiration cytology of minor salivary gland tumours of the palate. Cytopathology. 2002;13(5):309–16.

    Article  PubMed  Google Scholar 

  73. Watanabe K, Ono N, Saito K, Saito A, Suzuki T. Fine-needle aspiration cytology of polymorphous low-grade adenocarcinoma of the tongue. Diagn Cytopathol. 1999;20(3):167–9.

    Article  CAS  PubMed  Google Scholar 

  74. Bhattacharya JB, Singh M, Jain SL. Intraparotid schwannoma masquerading as primary spindle cell tumour of parotid: a diagnostic pitfall. J Cytol. 2017;34(4):221–3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bauer JL, Miklos AZ, Thompson LD. Parotid gland solitary fibrous tumor: a case report and clinicopathologic review of 22 cases from the literature. Head Neck Pathol. 2012;6(1):21–31.

    Article  PubMed  Google Scholar 

  76. Siddaraju N, Badhe BA, Goneppanavar M, Mishra MM. Preoperative fine needle aspiration cytologic diagnosis of spindle cell myoepithelioma of the parotid gland: a case report. Acta Cytol. 2008;52(4):495–9.

    Article  PubMed  Google Scholar 

  77. Saad RS, Takei H, Lipscomb J, Ruiz B. Nodular fasciitis of parotid region: a pitfall in the diagnosis of pleomorphic adenomas on fine-needle aspiration cytology. Diagn Cytopathol. 2005;33(3):191–4.

    Article  PubMed  Google Scholar 

  78. Kumar PV, Sobhani SA, Monabati A, Hashemi SB, Eghtadari F, Hamidi SA. Myoepithelioma of the salivary glands. Fine needle aspiration biopsy findings. Acta Cytol. 2004;48(3):302–8.

    Article  PubMed  Google Scholar 

  79. Sheshadri P, Kalappa TM, Pramod Krishna B, Kumaran S, Lakshith Biddappa MA. Dermoid cyst of submental region mimicking Pilomatricoma. J Maxillofac Oral Surg. 2016l;15(Suppl 2):339–42.

    Article  CAS  PubMed  Google Scholar 

  80. Joshi U, Chufal SS, Thapliyal N, Khetan H. Cytomorphological features of papillary cystadenocarcinoma of parotid gland: a case report with review of literature. Cytojournal. 2016;13:12.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kawahara A, Harada H, Mihashi H, Akiba J, Kage M. Cytological features of cystadenocarcinoma in cyst fluid of the parotid gland: diagnostic pitfalls and literature review. Diagn Cytopathol. 2010;38(5):377–81.

    PubMed  Google Scholar 

  82. Zhang S, Bao R, Abreo F. Papillary oncocytic cystadenoma of the parotid glands: a report of 2 cases with varied cytologic features. Acta Cytol. 2009;53(4):445–8.

    Article  PubMed  Google Scholar 

  83. Ohta M, Imamura Y, Mori M, Maegawa H, Kojima A, Fujieda S. Benign cystic teratoma of the parotid gland: a case report. Acta Cytol. 2009;53(4):427–30.

    Article  PubMed  Google Scholar 

  84. Moatamed NA, Naini BV, Fathizadeh P, Estrella J, Apple SK. A correlation study of diagnostic fine-needle aspiration with histologic diagnosis in cystic neck lesions. Diagn Cytopathol. 2009;37(10):720–6.

    Article  PubMed  Google Scholar 

  85. Edwards PC, Wasserman P. Evaluation of cystic salivary gland lesions by fine needle aspiration: an analysis of 21 cases. Acta Cytol. 2005;49(5):489–94.

    Article  PubMed  Google Scholar 

  86. From Wang H, Malik A, Gong Y. Salivary Gland fine needle aspiration. In: Jin X, Siddiqui MT, Li Q, editors. Atlas of non-gynecologic cytology. 1st ed. New York City: Springer; 2018. p. 1–46.

    Google Scholar 

  87. Michelow P, Dezube BJ, Pantanowitz L. Fine needle aspiration of salivary gland masses in HIV-infected patients. Diagn Cytopathol. 2012;40:684–90.

    Article  PubMed  Google Scholar 

  88. Heaton CM, Chazen JL, van Zante A, Glastonbury CM, Kezirian EJ, Eisele DW. Pleomorphic adenoma of the major salivary glands: diagnostic utility of FNAB and MRI. Laryngoscope. 2013;123:3056–60.

    Article  PubMed  Google Scholar 

  89. Andreasen S, Melchior LC, Kiss K, Bishop JA, Høgdall E, Grauslund M, Wessel I, Homøe P, Agander TK. The PRKD1 E710D hotspot mutation is highly specific in separating polymorphous adenocarcinoma of the palate from adenoid cystic carcinoma and pleomorphic adenoma on FNA. Cancer Cytopathol. 2018;126:275–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Arbzadeh, E., Gong, Y., Wang, H. (2020). Salivary Gland. In: Xu, H., Qian, X., Wang, H. (eds) Practical Cytopathology . Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-24059-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24059-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24058-5

  • Online ISBN: 978-3-030-24059-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics