Skip to main content

Sporormiella Fungal Spores as a Proxy for Megaherbivore Abundance and Decline at Pilauco

  • Chapter
  • First Online:
Pilauco: A Late Pleistocene Archaeo-paleontological Site

Abstract

The study of coprophilous fungal spores associated with herbivorous faeces has been used to determine, among others, the presence, abundance and decrease of the megafauna populations on land at the end of the Pleistocene. Sporormiella sp. is the most abundant spore species in pollen samples, and it is exclusively restricted to faeces from domestic and wild herbivores. The present study encompasses the analysis and interpretation of Sporormiella sp. concentrations from two sediment columns with different resolution from the archaeo-paleontological Pilauco site. In both cases, the concentration of Sporormiella sp. reaches maximum values up to ~1.920 spores per cm−3 within the sedimentary layers PB-7 and PB-8, followed by a decline at the base of PB-9 layer corresponding to 12.800 cal. year BP. The disappearance of Sporormiella sp. across the PB-8/PB-9 erosional unconformity might be explained by a local decline of the megafauna producing this spore at Pilauco. Additional proxies and records are needed to further confirm the regional extinction of megafauna towards the end of the Pleistocene in north-western Chilean Patagonia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed SI, Cain RF (1972) Revision of the genera Sporormia and Sporormiella. Can J Bot 50(3):419–477

    Article  Google Scholar 

  • Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland. Quat Sci Rev 19:213–226

    Article  Google Scholar 

  • Araujo BB, Oliveira-Santos LGR, Lima-Ribeiro MS, Diniz-Filho JAF, Fernandez FA (2017) Bigger kill than chill: The uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat Int 431:216–222

    Article  Google Scholar 

  • Baker AG, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat Sci Rev 62:21–31

    Article  Google Scholar 

  • Baker AG, Cornelissen P, Bhagwat SA, Vera FW, Willis KJ (2016) Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores. Methods Ecol Evol 7(11):1273–1281

    Article  Google Scholar 

  • Barnosky A, Lindsey E (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217(1–2):10–29

    Article  Google Scholar 

  • Barnosky AD, Koch PL, Feranec R S, Wing SL, Shabel AB (2004) Assessing the causes of late Pleistocene extinctions on the continents. Sci 306(5693):70–75

    Article  Google Scholar 

  • Björck S (2007) Younger Dryas oscillation, global evidence. 1987–1994. In: Elias SA (ed) Encyclopedia of quaternary science, vol 3. Elsevier B.V. Oxford, pp 1985–1993

    Chapter  Google Scholar 

  • Borrero LA (2008) Extinction of Pleistocene megamammals in South America: The lost evidence. Quat Int 185(1):69–74

    Article  Google Scholar 

  • Borrero LA, Zárate M, Miotti L, Massone M (1998) The Pleistocene Holocene transition and human occupations in the southern cone of South America. Quat Int 49(97):191–199

    Article  Google Scholar 

  • Broecker WS (2006) Was the Younger Dryas triggered by a flood? Science 312(5777):1146–1148

    Article  Google Scholar 

  • Brook BW, Barnosky AD (2012) Quaternary extinctions and their link to climate change. In Hannah L (ed) Saving a million species island press/center for resource economics saving a million species: extinction risk from climate change. Island Press, pp 179–198

    Google Scholar 

  • Burney D, Flannery T (2005) Fifty millennia of catastrophic extinctions after human contact. Trends Ecol Evol 20(7):395–401

    Article  Google Scholar 

  • Comandini O, Rinaldi A (2004) Tracing megafaunal extinctions with dung fungal spores. Mycologist 18:140–142

    Article  Google Scholar 

  • Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat Res (Orlando) 28(2):290–294

    Article  Google Scholar 

  • Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237(1):40–50

    Article  Google Scholar 

  • Ekblom A, Gillson L (2010) Dung fungi as indicators of past herbivore abundance, Kruger and Limpopo National Park. Palaeogeogr Palaeoclimatol Palaeoecol 296(1–2):14–27

    Article  Google Scholar 

  • Etienne D, Jouffroy-Bapicot I (2014) Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Veg Hist Archaeobot 23(6):743–749

    Article  Google Scholar 

  • Etienne D, Wilhelm B, Sabatier P, Reyss JL, Arnaud F (2013) Influence of sample location and livestock numbers on Sporormiella concentrations and accumulation rates in surface sediments of Lake Allos, French Alps. J Paleolimnol 49(2):117–127

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, London, UK

    Google Scholar 

  • Feranec R, Miller N, Lothrop J, Graham R (2011) The Sporormiella proxy and end-Pleistocene megafaunal extinction: a perspective. Quat Int 245(2):333–338

    Article  Google Scholar 

  • Ficcarelli G, Coltorti M, Moreno-Espinosa M, Pieruccini P, Rook L, Torre D (2003) A model for the Holocene extinction of the mammal megafauna in Ecuador. J S Am Earth Sci 15(8):835–845

    Article  Google Scholar 

  • Fiedel S, Haynes G (2004) A premature burial: comments on Grayson and Meltzer’s ‘Requiem for overkill’. J Archaeol Sci 31:121–131

    Article  Google Scholar 

  • Firestone RB, West A, Kennett JP, Becker L, Bunch TE, Revay ZS, Schultz ZS, Belgya TD, Kennett J, Erlandson JM, Dickenson OJ, Goodyear AC, Harris RS, Howard GA, Kloosterman JB, Lechler P, Mayewski 
PA, Montgomery J, Poreda R, Darrah T, Que Hee SS, Smith AR, Stich A, Topping W, Wittke 
JH, Wolbach WS (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Natl Acad Sci USA 104:16.016–16.021

    Article  Google Scholar 

  • Gill JL (2014) Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytol 201(4):1163–1169

    Article  Google Scholar 

  • Gill JL, McLauchlan KK, Skibbe AM, Goring S, Zirbel CR, Williams JW (2013) Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. J Ecol 101(5):1125–1136

    Article  Google Scholar 

  • González E, Labarca R, Chávez M, Pino M (2014) First fossil record of the smallest deer cf. Pudu Molina, 1792 (ARTIODACTYLA, CERVIDAE) in the Late Pleistocene of South America. J Vert Paleontol 34 (2):483–488

    Article  Google Scholar 

  • Graf M, Chmura G (2006) Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Rev Palaeobot Palynol 141(1–2):139–149

    Article  Google Scholar 

  • Haynes G (2009) American Megafaunal Extinctions at the end of the Pleistocene Springer

    Google Scholar 

  • Haynes G, Klimowicz J (2015) Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat Int 35919–37

    Google Scholar 

  • Johnson CN, Rule S, Haberle SG, Turney CS, Kershaw AP, Brook BW (2015) Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions. Quat Sci Rev 110:107–113

    Article  Google Scholar 

  • Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. ‎‎Annu Rev Ecol Evol Syst 37, 215–250

    Article  Google Scholar 

  • Labarca R, Pino M, Recabarren O (2013) Los Lamini (Cetartiodactyla: Camelidae) extintos del yacimiento de Pilauco (Norpatagonia chilena): aspectos taxonómicos y tafonómicos preliminares. Estud Geol 69(2):255–269

    Google Scholar 

  • Levetin E, Rogers CA, Hall SA (2000) Comparison of pollen sampling with a Burkard Spore Trap and a Tauber Trap in a warm temperate climate. Grana 39:294–302

    Article  Google Scholar 

  • Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J, Marske Ugan A, Borregaard MKM, Gilbert TP, Nielsen R, Ho SYW, Goebel T, Graf KE, Byers D, Stenderup JT, Rasmussen M, Campos PF, Leonard JA, Koepfli KP, Froese D, Zazula G, Stafford TW, Aaris-Sørensen K, Batra P, Haywood AM, Singarayer JS, Valdes PJ, Boeskorov G, Burns JA, Davydov SP, Haile J, Jenkins DL, Kosintsev P, Kuznetsova T, Lai X, Martin LD, McDonald HG, Mol D, Meldgaard M, Munch K, Stephan E, Sablin M, Sommer RS, Sipko T, Scott E, Suchard MA, Tikhonov A, Willerslev R, Wayne RK, Cooper A, Hofreiter M, Sher A, Shapiro B, Rahbek C, Willerslev E (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479(7373):359–364

    Article  Google Scholar 

  • MacPhee RDE, Marx PA (1997) The 40,000-year plague: Humans, hyperdisease, and first-contact extinctions. In: Goodman SM, Patterson BD (eds) Natural change and human impact in Madagascar. Smithsonian Institution Press, Washington

    Google Scholar 

  • Mungai P, Njoguc J, Chukeatirotea E, Hyde K (2012) Coprophilous ascomycetes in Kenya: Sporormiella from wildlife dung. Mycology 3(4):234–251

    Google Scholar 

  • Parker NE, Williams JW (2012) Influences of climate, cattle density, and lake morphology on Sporormiella abundances in modern lake sediments in the U.S. Great Plains. The Holocene 22(4):475–483

    Article  Google Scholar 

  • Pino M, Martel-Cea A, Astorga G, Abarzúa AM, Cossio N, Navarro X, Lira MP, Labarca R, Lecompte MA, Adedeji V, Moore CR, Bunch TE, Mooney C, Wolbach W S, West A, Kennett, JP (2019). Sedimentary record from Patagonia, southern Chile supports cosmic- impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci Rep 9(1) 4413

    Google Scholar 

  • Raczka MF, Bush MB, Folcik AM, McMichael CH (2016) Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics. Biota Neotrop 16(1)

    Google Scholar 

  • Raper D, Bush MB (2009) A test of Sporormiella representation as a predictor of megaherbivore presence and abundance Quat Res (Orlando) 71:490–496.

    Google Scholar 

  • Recabarren O (2007) Análisis de restos óseos de gonfoterios del área comprendida entre los 39° 39′ y 42° 49′ S, centro - sur de Chile. Undergraduate Dissertation. Universidad Austral de Chile., Escuela de Ciencias, Universidad Austral de Chile

    Google Scholar 

  • Recabarren O, Pino M, Cid I (2011) A new record of Equus (Mammalia: Equidae) from the Late Pleistocene of central-south Chile. Rev Chil Hist Nat 84(4)

    Article  Google Scholar 

  • Rozas-Dávila A, Valencia V, Bush M (2016) The functional extinction of Andean megafauna. Ecology 97(10):2533–2539

    Article  Google Scholar 

  • Scott E (2010) Extinctions, scenarios, and assumptions: Changes in latest Pleistocene large herbivore abundance and distribution in western North America. Quat Int 217(1–2):225–239

    Article  Google Scholar 

  • Silva N (2014) Uso de esporas de Sporormiella sp. como proxy para determinar extinción de megafauna en el sitio Pilauco, Osorno. Undergraduate Dissertation, Universidad Austral de Chile

    Google Scholar 

  • van der Kaars S, Miller GH, Turney CS, Cook EJ, Nürnberg D, Schönfeld J, Lehman SJ (2017) Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat Commun 8:14142

    Article  Google Scholar 

  • van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82(3–4):313–329

    Article  Google Scholar 

  • Villavicencio NA, Lindsey EL, Martin FM, Borrero LA, Moreno PI, Marshall CR Barnosky AD (2016) Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39(2):125–140

    Article  Google Scholar 

  • Wignall PB, Benton MJ (1999) Lazarus taxa and fossil abundance at times of biotic crisis. J Geol Soc (London)156 (3):453–456

    Article  Google Scholar 

  • Wood JR, Wilmshurst JM (2013) Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events. Quat Sci Rev 77:1–3

    Article  Google Scholar 

  • Wood JR, Rawlence NJ, Rogers GM, Austin JJ, Worthy TH, Cooper A (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves Dinornithiformes). Quat Sci Rev 27(27):2593–2602

    Article  Google Scholar 

  • Wroe S, Field JH, Archer M, Grayson DK, Price GJ, Louys J, Faith JT, Webb GE, Davidson I, Mooney SD (2013) Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia–New Guinea). Proc Natl Acad Sci USA 110(22):8777–8781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pino, M., Cossio-Montecinos, N., Pinto, B. (2020). Sporormiella Fungal Spores as a Proxy for Megaherbivore Abundance and Decline at Pilauco. In: Pino , M., Astorga, G. (eds) Pilauco: A Late Pleistocene Archaeo-paleontological Site. The Latin American Studies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-030-23918-3_6

Download citation

Publish with us

Policies and ethics