Skip to main content

Myco-Nanotechnological Approach for Improved Degradation of Lignocellulosic Waste: Its Future Aspect

  • Chapter
  • First Online:
Mycodegradation of Lignocelluloses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Simultaneous increasing in household and agricultural waste is directly proportional to rising population and development of society. Similarly high demand of sustainable energy and materials requires improvements in renewable energy production technology to meet the global demands. From the last few decades, scientists are consistently attempting for improved conversion of voluminous complex lignocellulosic biomass into simpler C5 and C6 sugars, which can be further converted into different valuable products using biochemical and physicochemical routes. However, complex properties of lignocelluloses, their recalcitrant nature to degradation and non-economical availability of enzymes can promote towards transformation using engineered nanoparticles (NPs) as a nanocarrier. The nanosupport immobilized lignolytic enzymes have emerged as an eco-friendly sustainable technology to resolve above issues. This chapter deals the role of different NPs immobilized enzymes in improvement of enzyme stability, activity, reusability, recovery, and lignocellulose conversion ability in different fuels, materials, and value-added chemicals. These practices may reduce fuel cost, adverse effect of fossil fuel, and global pollutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Sardar M (2014) Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study. Ind J Biochem Biophy 51:314–320

    Google Scholar 

  • Alftrén J, Hobley TJ (2014) Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling. Biomass Bioenergy 65:72–78

    Article  CAS  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Appl Biochem Biotechnol 160:280

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Husain Q, Qayyum S, Azam A (2011) Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol 49:2107–2115

    Article  CAS  PubMed  Google Scholar 

  • Atacan K, Çakıroğlu B, Özacar M (2017) Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int J Biol Macromol 97:148–155

    Article  CAS  PubMed  Google Scholar 

  • Baby TT, Aravind SJ, Arockiadoss T, Rakhi R, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sensors Actuators B Chem 145:71–77

    Article  CAS  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: The biochemistry of plants, vol 14. pp 297–371

    Google Scholar 

  • Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600

    Article  CAS  Google Scholar 

  • Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energy 98:23–28

    Article  CAS  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  • Bhardwaj AK, Shukla A, Mishra RK, Singh S, Mishra V, Uttam K, Singh MP, Sharma S, Gopal R (2017a) Power and time dependent microwave assisted fabrication of silver nanoparticles decorated cotton (SNDC) fibers for bacterial decontamination. Front Microbiol 8:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj AK, Shukla A, Singh SC, Uttam KN, Nath G, Gopal R (2017b) Green synthesis of Cu2O hollow microspheres. Adv Mat Proceed 2(2):132–138

    Google Scholar 

  • Bhardwaj AK, Shukla A, Maurya S, Singh SC, Uttam KN, Sundaram S, Singh MP, Gopal R (2018) Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: photon energy as key for size and distribution control. J Photochem Photobiol B Biol 188:42–49

    Article  CAS  Google Scholar 

  • Bilal M, Zhao Y, Rasheed T, Iqbal HM (2018) Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int J Biol Macromol 120:2530–2544

    Article  CAS  PubMed  Google Scholar 

  • Bilandzija N, Voca N, Jelcic B, Jurisic V, Matin A, Grubor M, Kricka T (2018) Evaluation of Croatian agricultural solid biomass energy potential. Renew Sust Energ Rev 93:225–230

    Article  Google Scholar 

  • Blanchette C, Lacayo CI, Fischer NO, Hwang M, Thelen MP (2012) Enhanced cellulose degradation using cellulase-nanosphere complexes. PLoS One 7:e42116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohara RA, Thorat ND, Pawar SH (2016) Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean J Chem Eng 33:216–222

    Article  CAS  Google Scholar 

  • Campbell AS, Dong C, Meng F, Hardinger J, Perhinschi G, Wu N, Dinu CZ (2014) Enzyme catalytic efficiency: a function of bio–nano interface reactions. ACS Appl Mater Interfaces 6:5393–5403

    Article  CAS  PubMed  Google Scholar 

  • Carli S, de Campos Carneiro LAB, Ward RJ, Meleiro LP (2019) Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: a study of synergistic effects. Protein Expr Purif 160:28–35

    Article  CAS  PubMed  Google Scholar 

  • Cha T, Guo A, Zhu XY (2005) Enzymatic activity on a chip: the critical role of protein orientation. Proteomics 5:416–419

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Gao A, Cen K, Zhang J, Cao X, Ma Z (2018) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237

    Article  CAS  Google Scholar 

  • Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal 36:1223–1229

    Google Scholar 

  • Chiaradia V, Valério A, de Oliveira D, Araújo PH, Sayer C (2016) Simultaneous single-step immobilization of Candida antarctica lipase B and incorporation of magnetic nanoparticles on poly (urea-urethane) nanoparticles by interfacial miniemulsion polymerization. J Mol Catal B Enzym 131:31–35

    Google Scholar 

  • Dinçer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14

    Article  CAS  Google Scholar 

  • Dutta N, Saha MK (2019) Nanoparticle-induced enzyme pretreatment method for increased glucose production from lignocellulosic biomass under cold conditions. J Sci Food Agric 99:767–780

    Article  CAS  PubMed  Google Scholar 

  • Epp J (2016) X-ray diffraction (XRD) techniques for materials characterization. In: Materials characterization using Nondestructive Evaluation (NDE) methods. Elsevier, pp 81–124

    Google Scholar 

  • Fapyane D, Ferapontova EE (2017) Electrochemical assay for a total cellulase activity with improved sensitivity. Anal Chem 89:3959–3965

    Article  CAS  PubMed  Google Scholar 

  • Foner S (1959) Versatile and sensitive vibrating-sample magnetometer. Rev Sci Instrum 30:548–557

    Article  Google Scholar 

  • Goldstein J (2012) Practical scanning electron microscopy: electron and ion microprobe analysis. Springer Science & Business Media, Berlin

    Google Scholar 

  • Goyal A, Ghosh B, Eveleigh D (1991) Characteristics of fungal cellulases. Bioresour Technol 36:37–50

    Article  CAS  Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  • Guzik U, Hupert-Kocurek K, Wojcieszyńska D (2014) Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 19:8995–9018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner B (2007) Scanning electron microscopy primer. Characterization Facility, University of Minnesota-Twin Cities, pp 1–29

    Google Scholar 

  • Harmoko C, Sucipto KI, Retnoningtyas ES, Hartono SB (2016) Vinyl functionalized cubic mesoporous silica nanoparticles as supporting materials to enhance cellulase enzyme stability. ARPN J Eng Appl Sci 11:2981–2992

    CAS  Google Scholar 

  • He H, Gao C (2010) Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl Mater Interfaces 2:3201–3210

    Google Scholar 

  • Honda T, Tanaka T, Yoshino T (2015) Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules 16:3863–3868

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SH, Hosseini SA, Zohreh N, Yaghoubi M, Pourjavadi A (2018) Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability. J Agric Food Chem 66:789–798

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liang B, Fang L, Ma G, Yang G, Zhu Q, Chen S, Ye X (2016) Antifouling zwitterionic coating via electrochemically mediated atom transfer radical polymerization on enzyme-based glucose sensors for long-time stability in 37 ºC serum. Langmuir 32:11763–11770

    Google Scholar 

  • Huang P-J, Chang K-L, Hsieh J-F, Chen S-T (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. Biomed Res Int 2015:409103

    Google Scholar 

  • Husain Q, Ansari SA, Alam F, Azam A (2011) Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int J Biol Macromol 49:37–43

    Google Scholar 

  • Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    Article  CAS  Google Scholar 

  • Iype T, Thomas J, Mohan S, Johnson KK, George LE, Ambattu LA, Bhati A, Ailsworth K, Menon B, Rayabandla SM (2017) A novel method for immobilization of proteins via entrapment of magnetic nanoparticles through epoxy cross-linking. Anal Biochem 519:42–50

    Article  CAS  PubMed  Google Scholar 

  • Jafari Khorshidi K, Lenjannezhadian H, Jamalan M, Zeinali M (2016) Preparation and characterization of nanomagnetic cross-linked cellulase aggregates for cellulose bioconversion. J Chem Technol Biotechnol 91:539–546

    Article  CAS  Google Scholar 

  • Jahangeer S, Khan N, Jahangeer S, Sohail M, Shahzad S, Ahmad A, Khan SA (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pak J Bot 37:739

    Google Scholar 

  • Jordan J, Theegala C (2014) Probing the limitations for recycling cellulase enzymes immobilized on iron oxide (Fe3O4) nanoparticles. Biomass Convers Biorefin 4:25–33

    Article  CAS  Google Scholar 

  • Khan MJ, Qayyum S, Alam F, Husain Q (2011) Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens. Nanotechnology 22:455708

    Google Scholar 

  • Khan M, Husain Q, Naqvi AH (2016) Graphene based magnetic nanocomposites as versatile carriers for high yield immobilization and stabilization of β-galactosidase. RSC Adv 6:53493–53503

    Article  CAS  Google Scholar 

  • Khan M, Husain Q, Ahmad N (2019) Elucidating the binding efficacy of β-galactosidase on polyaniline–chitosan nanocomposite and polyaniline–chitosan–silver nanocomposite: activity and molecular docking insights. J Chem Technol Biotechnol 94:837–849

    Article  CAS  Google Scholar 

  • Khoshnevisan K, Vakhshiteh F, Barkhi M, Baharifar H, Poor-Akbar E, Zari N, Stamatis H, Bordbar A-K (2017) Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Mol Catal 442:66–73

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Le Goff M, Gallet Y (2004) A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo-and archeo-intensity determinations. Earth Planet Sci Lett 229:31–43

    Article  CAS  Google Scholar 

  • Li Y, Wang X-Y, Zhang R-Z, Zhang X-Y, Liu W, Xu X-M, Zhang Y-W (2014) Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@ SiO2 nanoparticles. J Nanosci Nanotechnol 14:2931–2936

    Article  CAS  PubMed  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad M, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964

    Google Scholar 

  • Mamilla JL, Novak U, Grilc M, Likozar B (2019) Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 120:417–425

    Article  CAS  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  • Maurya S, Bhardwaj A, Gupta K, Agarwal S, Kushwaha A (2016) Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. Cell Mol Biol 62:131

    Google Scholar 

  • Metzger JO, Hüttermann A (2009) Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften 96:279–288

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Sardar M (2015) Cellulase assisted synthesis of nano-silver and gold: application as immobilization matrix for biocatalysis. Int J Biol Macromol 77:105–113

    Article  CAS  PubMed  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  • Mubarak N, Wong J, Tan K, Sahu J, Abdullah E, Jayakumar N, Ganesan P (2014) Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J Mol Catal B Enzym 107:124–131

    Article  CAS  Google Scholar 

  • Mussatto SI (2016) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam

    Google Scholar 

  • Nawaz MA, Karim A, Bibi Z, Rehman HU, Aman A, Hussain D, Ullah M, Qader SAU (2016) Maltase entrapment approach as an efficient alternative to increase the stability and recycling efficiency of free enzyme within agarose matrix. J Taiwan Inst Chem Eng 64:31–38

    Article  CAS  Google Scholar 

  • Nery EW, Kubota LT (2016) Evaluation of enzyme immobilization methods for paper-based devices—a glucose oxidase study. J Pharm Biomed Anal 117:551–559

    Article  CAS  PubMed  Google Scholar 

  • Pathak Y, Thassu D (2016) Drug delivery nanoparticles formulation and characterization. Vol. 191. CRC Press

    Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity–relating pH to biomatrix opening. New Biotechnol 27:739–750

    Article  CAS  Google Scholar 

  • Perlack RD (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Ma’mani L, Derakhshankhah H, Ganjali MR, Hosseini M (2018) Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability. Process Biochem 71:92–100

    Article  CAS  Google Scholar 

  • Refaat, A. A. (2012) 5.13-biofuels from waste materials, in Comprehensive Renewable Energy, S. Ali, Ed., pp. 217–261, Elsevier, Oxford, UK

    Google Scholar 

  • Reineck P, Lin Y, Gibson BC, Dickey MD, Greentree AD, Maksymov IS (2019) UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci Rep 9:5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

    Article  CAS  PubMed  Google Scholar 

  • Roth HC, Schwaminger SP, Peng F, Berensmeier S (2016) Immobilization of cellulase on magnetic nanocarriers. Chemistry Open 5:183–187

    Google Scholar 

  • Rueda N, dos Santos JC, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R (2016) Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. Chem Rec 16:1436–1455

    Article  CAS  PubMed  Google Scholar 

  • Salunke BK, Sawant SS, Kang TK, Seo DY, Cha Y, Moon SA, Alkotaini B, Sathiyamoorthi E, Kim BS (2015) Potential of biosynthesized silver nanoparticles as nanocatalyst for enhanced degradation of cellulose by cellulase. J Nanomater 16, 18

    Google Scholar 

  • Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40:9–22

    Google Scholar 

  • Saratale GD, Oh SE (2012) Lignocellulosics to ethanol: the future of the chemical and energy industry. Afr J Biotechnol 11:1002–1013

    CAS  Google Scholar 

  • Seemala B, Meng X, Parikh A, Nagane N, Kumar R, Wyman CE, Ragauskas A, Christopher P, Cai CM (2018) Hybrid catalytic biorefining of hardwood biomass to methylated furans and depolymerized technical lignin. ACS Sustain Chem Eng 6:10587–10594

    Article  CAS  Google Scholar 

  • Sharma A, Qiang Y, Antony J, Meyer D, Kornacki P, Paszczynski A (2007) Dramatic increase in stability and longevity of enzymes attached to monodispersive iron nanoparticles. IEEE Trans Magn 43:2418–2420

    Article  CAS  Google Scholar 

  • Shukla A, Bhardwaj AK, Pandey B, Singh S, Uttam K, Shah J, Kotnala R, Gopal R (2017) Laser synthesized magnetically recyclable titanium ferrite nanoparticles for photodegradation of dyes. J Mater Sci Mater Electron 28(20):15380–15386

    Article  CAS  Google Scholar 

  • Shukla A, Bhardwaj AK, Singh S, Uttam K, Gautam N, Himanshu A, Shah J, Kotnala R, Gopal R (2018) Microwave assisted scalable synthesis of titanium ferrite nanomaterials. J Appl Phys 123:161411

    Article  CAS  Google Scholar 

  • Srivastava N, Rawat R, Sharma R, Oberoi HS, Srivastava M, Singh J (2014) Effect of nickel–cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (class: Eurotiomycetes). Appl Biochem Biotechnol 174:1092–1103

    Google Scholar 

  • Srivastava N, Singh J, Ramteke PW, Mishra P, Srivastava M (2015) Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour Technol 183:262–266

    Google Scholar 

  • Stern J, Anbar M, Moraïs S, Lamed R, Bayer EA (2014) Insights into enhanced thermostability of a cellulosomal enzyme. Carbohydr Res 389:78–84

    Article  CAS  PubMed  Google Scholar 

  • Su X, Li X, Li J, Liu M, Lei F, Tan X, Li P, Luo W (2015) Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem 171:292–297

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman S, Cieh NL, Mokhtar MN, Naim MN, Kamal SMM (2017) Covalent immobilization of cyclodextrin glucanotransferase on kenaf cellulose nanofiber and its application in ultrafiltration membrane system. Process Biochem 55:85–95

    Article  CAS  Google Scholar 

  • Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl Biochem Biotechnol 175:3709–3728

    Article  CAS  PubMed  Google Scholar 

  • Tao Q-L, Li Y, Shi Y, Liu R-J, Zhang Y-W, Guo J (2016) Application of molecular imprinted magnetic Fe3O4@ SiO2 nanoparticles for selective immobilization of cellulase. J Nanosci Nanotechnol 16:6055–6060

    Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Biocatalysis—from discovery to application. Springer, pp 95–126

    Google Scholar 

  • Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, Berenjian A, Anarjan N, Jafari N, Nasiri S (2016) Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett 38:223–233

    Article  CAS  PubMed  Google Scholar 

  • Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  CAS  PubMed  Google Scholar 

  • Walker L, Wilson D (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3–14

    Article  CAS  Google Scholar 

  • Wan L, Chen Q, Liu J, Yang X, Huang J, Li L, Guo X, Zhang J, Wang K (2016) Programmable self-assembly of DNA–protein hybrid hydrogel for enzyme encapsulation with enhanced biological stability. Biomacromolecules 17:1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Wang WP, Yang H, Xian T, Jiang JL (2012) XPS and magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route. Mater Trans 53:1586–1589

    Google Scholar 

  • Wilson D, Langell M (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13

    Google Scholar 

  • Woodley JM (2013) Protein engineering of enzymes for process applications. Curr Opin Chem Biol 17:310–316

    Article  CAS  PubMed  Google Scholar 

  • Wu S, He Q, Zhou C, Qi X, Huang X, Yin Z, Yang Y, Zhang H (2012) Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale 4:2478–2483

    Google Scholar 

  • Xu J, Huo S, Yuan Z, Zhang Y, Xu H, Guo Y, Liang C, Zhuang X (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal Biotransform 29:71–76

    Article  CAS  Google Scholar 

  • Xu J, Sheng Z, Wang X, Liu X, Xia J, Xiong P, He B (2016) Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: application in saccharification of lignocellulose. Bioresour Technol 200:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Chen H, Yu D, Wang S, Yardeni M, Dai Q, Guo M, Liu Y, Lu F, Qu J (2011) Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem Commun 47:11689–11691

    Article  CAS  Google Scholar 

  • Yang C, Mo H, Zang L, Chen J, Wang Z, Qiu J (2016a) Surface functionalized natural inorganic nanorod for highly efficient cellulase immobilization. RSC Adv 6:76855–76860

    Article  CAS  Google Scholar 

  • Yang D, Wang X, Shi J, Wang X, Zhang S, Han P, Jiang Z (2016b) In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochem Eng J 105:273–280

    Google Scholar 

  • Yang Y, Deines T, Zhang M, Zhang K, Wang D (2018) Supercritical CO2 pretreatment of cellulosic biomass for biofuel production: effects of biomass particle size. In: ASME 2018 13th international manufacturing science and engineering conference. American Society of Mechanical Engineers, pp V002T004A018

    Google Scholar 

  • Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53:3448–3454

    Article  CAS  Google Scholar 

  • Zhang W, Qiu J, Feng H, Zang L, Sakai E (2015) Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater 375:117–123

    Article  CAS  Google Scholar 

  • Zhang L, Vilà N, Klein T, Kohring G-W, Mazurenko I, Walcarius A, Etienne M (2016) Immobilization of cysteine-tagged proteins on electrode surfaces by thiol–ene click chemistry. ACS Appl Mater Interfaces 8:17591–17598

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Ciston J, Zheng B, Miao X, Czarnik C, Pan Y, Sougrat R, Lai Z, Hsiung C-E, Yao K (2017) Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat Mater 16:532

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, A.K., Gupta, M.K., Naraian, R. (2019). Myco-Nanotechnological Approach for Improved Degradation of Lignocellulosic Waste: Its Future Aspect. In: Naraian, R. (eds) Mycodegradation of Lignocelluloses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-23834-6_12

Download citation

Publish with us

Policies and ethics