Skip to main content

Feedback Control in the Olivocerebellar Loop

  • Reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

About 40 years ago, a subpopulation of small neurons in the cerebellar nuclei was shown to project to the inferior olive, the source of the climbing fiber input to the cerebellum. This nucleo-olivary projection follows the zonal and probably also microzonal arrangement of the cerebellum so that closed loops are formed between the neurons in the olive, the cerebellar cortex, and the nuclei. Although it was first thought to be excitatory, it was subsequently shown that the cells were GABAergic and that activity in the nucleo-olivary pathway inhibits olivary activity. A number of functions have been suggested for this inhibition: (a) feedback control of learning, (b) gating of olivary input in general, and (c) feedback control of background activity in Purkinje cells. Evidence is consistent with (a) and (c). Activity in the nucleo-olivary pathway suppresses both synaptic transmission and background activity in the olive. When conditional blink responses develop, the blink-related part of the olive is inhibited. When the nucleo-olivary pathway is interrupted, there is a corresponding increase in complex spike discharge in Purkinje cells followed by a strong suppression of simple spike firing. Stimulation of the pathway has the opposite results. It is concluded that the nucleo-olivary fibers are inhibitory and that they form a number of independent feedback loops, each one specific for a microcomplex, in a system that regulates cerebellar learning as well as spontaneous activity in the cerebello-olivocerebellar circuit. Besides these inhibitory effects, it has been argued that the nucleo-olivary pathway regulates electrotonic coupling between olivary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersson G (1984) Mutual inhibition between olivary cell groups projecting to different cerebellar microzones in the cat. Exp Brain Res 54(2):293–303

    CAS  PubMed  Google Scholar 

  • Andersson G, Hesslow G (1987a) Activity of Purkinje cells and interpositus neurons during and after periods of high frequency climbing fibre activation in the cat. Exp Brain Res 67(3):533–542

    CAS  PubMed  Google Scholar 

  • Andersson G, Hesslow G (1987b) Inferior olive excitability after high frequency climbing fibre activation in the cat. Exp Brain Res 67(3):523–532

    CAS  PubMed  Google Scholar 

  • Andersson G, Oscarsson O (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32(4):565–579

    CAS  PubMed  Google Scholar 

  • Andersson G, Garwicz M, Hesslow G (1988) Evidence for a GABA-mediated cerebellar inhibition of the inferior olive in the cat. Exp Brain Res 72(3):450–456

    CAS  PubMed  Google Scholar 

  • Angaut P, Sotelo C (1987) The dentato-olivary projection in the rat as a presumptive GABAergic link in the olivo-cerebello-olivary loop. An ultrastructural study. Neurosci Lett 83(3):227–231

    CAS  PubMed  Google Scholar 

  • Angaut P, Sotelo C (1989) Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat. Brain Res 479(2):361–365

    CAS  PubMed  Google Scholar 

  • Apps R (1999) Movement-related gating of climbing fibre input to cerebellar cortical zones. ProgNeurobiol 57(5):537–562

    CAS  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    CAS  PubMed  Google Scholar 

  • Apps R, Lee S (1999) Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat [see comments]. J Physiol Lond 516(Pt 3):875–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apps R, Atkins MJ, Garwicz M (1997) Gating of cutaneous input to cerebellar climbing fibres during a reaching task in the cat. J Physiol Lond 502(Pt 1):203–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. J Physiol Lond 289:425–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ban M, Ohno T (1977) Projection of cerebellar nuclear neurons to the inferior olive by descending collaterals of ascending fibres. Brain Res 133(1):156–161

    CAS  PubMed  Google Scholar 

  • Batini C, Billard JM, Daniel H (1985) Long term modification of cerebellar inhibition after inferior olive degeneration. Exp Brain Res 59(2):404–409

    CAS  PubMed  Google Scholar 

  • Batini C, Daniel H, Ramirez RD (1987) Release of cerebellar inhibitory activity by partial destruction of the inferior olive with kainic acid in rat. Brain Res 403(1):186–191. https://doi.org/10.1016/0006-8993(87)90143-0

    Article  CAS  PubMed  Google Scholar 

  • Bazzigaluppi P, Ruigrok T, Saisan P, De Zeeuw CI, de Jeu M (2012) Properties of the nucleo-olivary pathway: an in vivo whole-cell patch clamp study. PLoS One 7(9):e46360. https://doi.org/10.1371/journal.pone.0046360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, He Q, Ohtsuki G, De Jeu MT, Elgersma Y, De Zeeuw CI, Jörntell H, Hansel C (2010) Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci 30:13630–13643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti F, Montarolo PG, Strata P, Tempia F (1983) Inferior olive inactivation decreases the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J Physiol Lond 340:195–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson F, Hesslow G (2006) Cerebellar control of the inferior olive. Cerebellum 5(1):7–14. Review. PMID:16527758

    Google Scholar 

  • Bengtsson F, Jorntell H (2009) Climbing fiber coupling between adjacent Purkinje cell dendrites in vivo. Front Cell Neurosci 3:7. https://doi.org/10.3389/neuro.03.007.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengtsson F, Svensson P, Hesslow G (2004) Feedback control of Purkinje cell activity by the cerebello-olivary pathway. Eur J Neurosci 20:2999–3005

    CAS  PubMed  Google Scholar 

  • Bengtsson F, Jirenhed D-A, Hesslow G (2007) Extinction of conditioned blink responses by cerebello-olivary pathway stimulation. Neuroreport 18:1479–1482

    PubMed  Google Scholar 

  • Best AR, Regehr WG (2009) Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA. Neuron 62:555–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blenkinsop TA, Lang EJ (2006) Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci 26(6):1739–1748. https://doi.org/10.1523/JNEUROSCI.3677-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR (2009) The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience 162(3):787–796

    CAS  PubMed  Google Scholar 

  • Cerminara NL, Rawson JA (2004) Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci 24(19):4510–4517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont J, Guyon N, Valera AM, Dugue GP, Popa D, Marcaggi P, Gautheron V, Reibel-Foisset S, Dieudonne S, Stephan A, Barrot M, Cassel JC, Dupont JL, Doussau F, Poulain B, Selimi F, Lena C, Isope P (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110(40):16223–16228. https://doi.org/10.1073/pnas.1302310110

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kovalchuk Y, Adelsberger H, Henning HA, Sausbier M, Wietzorrek G, Ruth P, Yarom Y, Konnerth A (2010) Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci U S A 107(27):12323–12328. https://doi.org/10.1073/pnas.1001745107

    Article  PubMed  PubMed Central  Google Scholar 

  • Colin F, Desclin J, Manil J (1979) Quantitative relationship between simple spike firing pattern and evoked complex spikes of cerebellar Purkinje cells after acute chemical destruction of the inferior olive [proceedings]. J Physiol 295:62P–63P

    CAS  PubMed  Google Scholar 

  • Colin F, Manil J, Desclin JC (1980) The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res 187(1):3–27

    CAS  PubMed  Google Scholar 

  • Daniel H, Angaut P, Batini C, Billard JM (1988) Topographic organization of the interpositorubral connections in the rat. A WGA-HRP study. Behav Brain Res 28(1–2):69–70

    CAS  PubMed  Google Scholar 

  • De Zeeuw CI, Ruigrok TJ (1994) Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Res 653(1–2):345–350

    PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284(1):12–35

    PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1990a) Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: an ultrastructural study using a combination of [3H]leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing. Neuroscience 34(3):645–655

    PubMed  Google Scholar 

  • De Zeeuw CI, Ruigrok TJ, Holstege JC, Jansen HG, Voogd J (1990b) Intracellular labeling of neurons in the medial accessory olive of the cat: II. Ultrastructure of dendritic spines and their GABAergic innervation. J Comp Neurol 300(4):478–494

    PubMed  Google Scholar 

  • De Zeeuw CI, van Alphen AM, Hawkins RK, Ruigrok TJ (1997) Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience 80(4):981–986

    PubMed  Google Scholar 

  • De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21(9):391–400

    PubMed  Google Scholar 

  • Demer JL, Echelman DA, Robinson DA (1985) Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat. Brain Res 346(1):22–31

    CAS  PubMed  Google Scholar 

  • Devor A (2002) The great gate: control of sensory information flow to the cerebellum. Cerebellum 1(1):27–34. https://doi.org/10.1080/147342202753203069

    Article  PubMed  Google Scholar 

  • Devor A, Yarom Y (2000) GABAergic modulation of olivary oscillations. ProgBrain Res 124:213–220

    CAS  Google Scholar 

  • Dietrichs E, Walberg F (1981) The cerebellar nucleo-olivary projection in the cat. AnatEmbryol(Berl) 162(1):51–67

    CAS  Google Scholar 

  • Dietrichs E, Walberg F, Strata P (1989) Direct bidirectional connections between the inferior olive and the cerebellar nuclei. In: The olivocerbellar system in motor control. Springer, Berlin, pp 61–81

    Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol Lond 182(2):268–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ekerot CF, Gustavsson P, Oscarsson O, Schouenborg J (1987) Climbing fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C fibres. J Physiol Lond 386:529–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. AnatEmbryol(Berl) 184(3):225–243

    CAS  Google Scholar 

  • Garifoli A, Scardilli G, Perciavalle V (2001) Effects of cerebellar dentate nucleus GABAergic cells on rat inferior olivary neurons. Neuroreport 12(17):3709–3713

    CAS  PubMed  Google Scholar 

  • Garwicz M, Ekerot CF (1994) Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol Lond 474(2):245–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geborek P, Jorntell H, Bengtsson F (2012) Stimulation within the cuneate nucleus suppresses synaptic activation of climbing fibers. Front Neural Circuits 6:120. https://doi.org/10.3389/fncir.2012.00120

    Article  PubMed  Google Scholar 

  • Gellman R, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 54(1):40–60

    CAS  PubMed  Google Scholar 

  • Giaquinta G, Casabona A, Smecca G, Bosco G, Perciavalle V (1999) Cortical control of cerebellar dentato-rubral and dentato-olivary neurons. Neuroreport 10(14):3009–3013

    CAS  PubMed  Google Scholar 

  • Gibson AR, Horn KM, Pong M (2002) Inhibitory control of olivary discharge. Ann N Y Acad Sci 978:219–231

    PubMed  Google Scholar 

  • Gilbert PF (1974) A theory of memory that explains the function and structure of the cerebellum. Brain Res 70(1):1–18

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Nauta HJ, Lasek RJ, Nauta WJ (1973) A cerebello-olivary pathway in the cat: an experimental study using autoradiographic tracing technics. Brain Res 58(1):205–211

    CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ, D'Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4(5):467–475

    CAS  PubMed  Google Scholar 

  • Hardiman MJ, Ramnani N, Yeo CH (1996) Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Exp Brain Res 110(2):235–247

    CAS  PubMed  Google Scholar 

  • Hausser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19(3):665–678

    CAS  PubMed  Google Scholar 

  • Hausser M, Raman IM, Otis T, Smith SL, Nelson A, du LS, Loewenstein Y, Mahon S, Pennartz C, Cohen I, Yarom Y (2004) The beat goes on: spontaneous firing in mammalian neuronal microcircuits. J Neurosci 24(42):9215–9219

    PubMed  PubMed Central  Google Scholar 

  • Heiney SA, Kim J, Augustine GJ, Medina JF (2014) Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci 34(6):2321–2330. https://doi.org/10.1523/JNEUROSCI.4547-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Herreros I, Verschure PF (2013) Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control. Neural Netw Official J Int Neural Netw Soc 47:64–71. https://doi.org/10.1016/j.neunet.2013.01.026

    Article  Google Scholar 

  • Hesslow G (1986) Inhibition of inferior olivary transmission by mesencephalic stimulation in the cat. Neurosci Lett 63(1):76–80

    CAS  PubMed  Google Scholar 

  • Hesslow G (1994a) Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol Lond 476(2):229–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesslow G (1994b) Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. J Physiol Lond 476(2):245–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesslow G, Ivarsson M (1996) Inhibition of the inferior olive during conditioned responses in the decerebrate ferret. Exp Brain Res 110(1):36–46

    CAS  PubMed  Google Scholar 

  • Hesslow G, Yeo CE (1998) Cerebellum and learning: a complex problem [letter and response]. Science 280:1817–1819

    CAS  PubMed  Google Scholar 

  • Horn KM, Van Kan PL, Gibson AR (1996) Reduction of rostral dorsal accessory olive responses during reaching. J Neurophysiol 76(6):4140–4151

    CAS  PubMed  Google Scholar 

  • Horn KM, Hamm TM, Gibson AR (1998) Red nucleus stimulation inhibits within the inferior olive. J Neurophysiol 80(6):3127–3136

    CAS  PubMed  Google Scholar 

  • Horn KM, Pong M, Gibson AR (2004) Discharge of inferior olive cells during reaching errors and perturbations. Brain Res 996(2):148–158

    CAS  PubMed  Google Scholar 

  • Horn KM, Pong M, Gibson AR (2010) Functional relations of cerebellar modules of the cat. J Neurosci 30(28):9411–9423. https://doi.org/10.1523/JNEUROSCI.0440-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda Y, Noda H, Sugita S (1989) Olivocerebellar and cerebelloolivary connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 284(3):463–488. https://doi.org/10.1002/cne.902840311

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neuronal control. Raven Press, New York

    Google Scholar 

  • Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27(10):2493–2502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jörntell H, Ekerot CF (2003) Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci 23(29):9620–9631

    PubMed  PubMed Central  Google Scholar 

  • Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238

    PubMed  Google Scholar 

  • Kamin LJ, Campbell B, Church R (1969) Predictability, surprise attention and conditioning. In: Punishment and aversive behavior. Appleton-Century-Crofts, New York

    Google Scholar 

  • Kim JJ, Krupa DJ, Thompson RF (1998a) Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science 279(5350):570–573

    CAS  PubMed  Google Scholar 

  • Kim JJ, Krupa DJ, Thompson RF (1998b) Response to Hesslow and Yeo. Science 280:1819

    Google Scholar 

  • Kimpo RR, Rinaldi JM, Kim CK, Payne HL, Raymond JL (2014) Gating of neural error signals during motor learning. eLife 3:e02076. https://doi.org/10.7554/eLife.02076

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang EJ (2001) Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 21(5):1663–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Sugihara I, Llinas R (1996) GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol 76(1):255–275

    CAS  PubMed  Google Scholar 

  • Lang EJ, Sugihara I, Welsh JP, Llinas R (1999) Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci 19(7):2728–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lefler Y, Yarom Y, Uusisaari MY (2014) Cerebellar inhibitory input to the inferior olive decreases electrical coupling and blocks subthreshold oscillations. Neuron 81(6):1389–1400. https://doi.org/10.1016/j.neuron.2014.02.032

    Article  CAS  PubMed  Google Scholar 

  • Legendre A, Courville J (1987) Origin and trajectory of the cerebello-olivary projection: an experimental study with radioactive and fluorescent tracers in the cat. Neuroscience 21(3):877–891

    CAS  PubMed  Google Scholar 

  • Lepora NF, Porrill J, Yeo CH, Dean P (2010) Sensory prediction or motor control? Application of marr-albus type models of cerebellar function to classical conditioning. Front Comput Neurosci 4:140. https://doi.org/10.3389/fncom.2010.00140

    Article  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3(6):958–965

    CAS  PubMed  Google Scholar 

  • Marshall SP, Lang EJ (2009) Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony. J Neurosci 29(45):14352–14362. https://doi.org/10.1523/JNEUROSCI.3498-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GF, Henkel CK, King JS (1976) Cerebello-olivary fibers: their origin, course and distribution in the North American opossum. Exp Brain Res 24:219–236

    CAS  PubMed  Google Scholar 

  • Maruta J, Hensbroek RA, Simpson JI (2007) Intraburst and interburst signaling by climbing fibers. J Neurosci 27(42):11263–11270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Hausser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62(3):388–399. https://doi.org/10.1016/j.neuron.2009.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCurdy ML, Gibson AR, Houk JC (1992) Spatial overlap of rubrospinal and corticospinal terminals with input to the inferior olive. NeuroImage 1(1):23–41. https://doi.org/10.1002/(SICI)1096-9861(19980302)392:1<115::AID-CNE8>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  • McCurdy ML, Houk JC, Gibson AR (1998) Organization of ascending pathways to the forelimb area of the dorsal accessory olive in the cat. J Comp Neurol 392(1):115–133. https://doi.org/10.1002/(SICI)1096-9861(19980302)392:1<115::AID-CNE8>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  • McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS, Turner RW (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol 97(4):2590–2604. https://doi.org/10.1152/jn.00627.2006

    Article  CAS  PubMed  Google Scholar 

  • Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416(6878):330–333

    CAS  PubMed  Google Scholar 

  • Miall RC, Keating JG, Malkmus M, Thach WT (1998) Simple spike activity predicts occurrence of complex spike cerebellar Purkinje cells. Nat Neurosci 1(1):13–15

    CAS  PubMed  Google Scholar 

  • Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci U S A 103(14):5555–5560. https://doi.org/10.1073/pnas.0601261103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montarolo PG, Palestini M, Strata P (1982) The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J Physiol Lond 332:187–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Najac M, Raman IM (2015) Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons. J Neurosci 35(2):544–549. https://doi.org/10.1523/JNEUROSCI.3583-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi F, Medina JF (2013) Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells. Front Neural Circuits 7:115. https://doi.org/10.3389/fncir.2013.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Najafi F, Giovannucci A, Wang SS, Medina JF (2014a) Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. eLife 3:e03663. https://doi.org/10.7554/eLife.03663

    Article  PubMed  PubMed Central  Google Scholar 

  • Najafi F, Giovannucci A, Wang SS, Medina JF (2014b) Sensory-driven enhancement of calcium signals in individual Purkinje cell dendrites of awake mice. Cell Rep 6(5):792–798. https://doi.org/10.1016/j.celrep.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson BJ, Mugnaini E (1988) The rat inferior olive as seen with immunostaining for glutamate decarboxylase. AnatEmbryol(Berl) 179(2):109–127

    CAS  Google Scholar 

  • Nelson B, Mugnaini E, Strata P (1989a) Origins of GABA-ergic inputs to the inferior olive. In: The olivocerebellar system in motor control. Springer, Berlin/Heidelberg/New York/London/Paris/Tokyo, pp 86–107

    Google Scholar 

  • Nelson BJ, Adams JC, Barmack NH, Mugnaini E (1989b) Comparative study of glutamate decarboxylase immunoreactive boutons in the mammalian inferior olive. J Comp Neurol 286(4):514–539

    CAS  PubMed  Google Scholar 

  • Nilaweera WU, Zenitsky GD, Bracha V (2005) Inactivation of the brachium conjunctivum prevents extinction of classically conditioned eyeblinks. Brain Res 1045(1–2):175–184. https://doi.org/10.1016/j.brainres.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  • Nilaweera WU, Zenitsky GD, Bracha V (2006) Inactivation of cerebellar output axons impairs acquisition of conditioned eyeblinks. Brain Res 1122(1):143–153. https://doi.org/10.1016/j.brainres.2006.08.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onodera S (1984) Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol 227(1):37–49

    CAS  PubMed  Google Scholar 

  • Palkovits M, Mezey E, Hamori J, Szentagothai J (1977) Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res 28(1–2):189–209

    CAS  PubMed  Google Scholar 

  • Pardoe J, Edgley SA, Drew T, Apps R (2004) Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion. J Neurosci 24(11):2656–2666. https://doi.org/10.1523/JNEUROSCI.1659-03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh JR, Raman IM (2009) Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci 32(3):170–177. S0166-2236(09)00005-8 [pii]. https://doi.org/10.1016/j.tins.2008.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17(12):4517–4526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19(5):1663–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnani N, Yeo CH (1996) Reversible inactivations of the cerebellum prevent the extinction of conditioned nictitating membrane responses in rabbits. J Physiol Lond 495(Pt 1):159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen A, Jirenhed D-A, Zucca R, Johansson F, Svensson P, Hesslow G (2013) Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci 33: 13436–13440. https://doi.org/10.1523/JNEUROSCI.1527-13.2013

  • Rasmussen A, Hesslow G (2014) Feedback control of learning by the cerebello-olivary pathway. Prog Brain Res 210:103–119. https://doi.org/10.1016/B978-0-444-63356-9.00005-4

    Article  PubMed  Google Scholar 

  • Rasmussen A, Jirenhed D-A, Hesslow G (2008) Simple and complex spike firing patterns in Purkinje cells during classical conditioning. Cerebelllum 7:563–566

    Google Scholar 

  • Rasmussen A, Jirenhed DA, Wetmore DZ, Hesslow G (2014) Changes in complex spike activity during classical conditioning. Frontiers in neural circuits 8:90. https://doi.org/10.3389/fncir.2014.00090

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawson JA, Tilokskulchai K (1981) Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. NeurosciLett 25(2):125–130

    CAS  Google Scholar 

  • Rescorla RA, Wagner AR, Black AH, Prokasy WF (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non reinforcement. In: Classical conditioning II. Appleton-Century-Crofts, New York, pp 64–99

    Google Scholar 

  • Ruigrok TJ (1997) Cerebellar nuclei: the olivary connection. ProgBrain Res 114:167–192

    CAS  Google Scholar 

  • Ruigrok TJ, Voogd J (1995) Cerebellar influence on olivary excitability in the cat. Eur J Neurosci 7(4):679–693

    CAS  PubMed  Google Scholar 

  • Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T (1998) Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci 18(14):5498–5507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sears LL, Steinmetz JE (1991) Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res 545(1–2):114–122

    CAS  PubMed  Google Scholar 

  • Smith SL, Otis TS (2003) Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade. J Neurosci 23(2):367–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhof TC, Rizo J (1996) Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17(3):379–388

    CAS  PubMed  Google Scholar 

  • Sugihara I (2010) Compartmentalization of the deep cerebellar nuclei based on afferent projections and Aldolase C expression. Cerebellum. https://doi.org/10.1007/s12311-010-0226-1

  • Sugihara I, Wu H, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414(2):131–148

    CAS  PubMed  Google Scholar 

  • Sultan F, Konig T, Mock M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452(4):311–323. https://doi.org/10.1002/cne.10365

    Article  CAS  PubMed  Google Scholar 

  • Svensson P, Bengtsson F, Hesslow G (2006) Cerebellar inhibition of inferior olivary transmission in the decerebrate ferret. Exp Brain Res 168:241–253

    CAS  PubMed  Google Scholar 

  • Teune TM, van der Burg J, De Zeeuw CI, Voogd J, Ruigrok TJ (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392(2):164–178

    CAS  PubMed  Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol 41(3):654–676

    CAS  PubMed  Google Scholar 

  • Tolbert DL, Massopust LC, Murphy MG, Young PA (1976) The anatomical organization of the cerebello-olivary projection in the cat. J Comp Neurol 170(4):525–544

    CAS  PubMed  Google Scholar 

  • Tolbert DL, Bantli H, Bloedel JR (1978) Multiple branching of cerebellar efferent projections in cats. Exp Brain Res 31(3):305–316

    CAS  PubMed  Google Scholar 

  • Tsukahara N, Bando T, Murakami F, Oda Y (1983) Properties of cerebello-precerebellar reverberating circuits. Brain Res 274(2):249–259

    CAS  PubMed  Google Scholar 

  • Uusisaari M, Knopfel T (2008) GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience 156(3):537–549. https://doi.org/10.1016/j.neuroscience.2008.07.060

    Article  CAS  PubMed  Google Scholar 

  • Uusisaari M, Knopfel T (2010) Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. https://doi.org/10.1007/s12311-010-0240-3

  • Uusisaari M, Obata K, Knopfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97(1):901–911. https://doi.org/10.1152/jn.00974.2006

    Article  CAS  PubMed  Google Scholar 

  • Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58(4):599–612. https://doi.org/10.1016/j.neuron.2008.03.016

    Article  CAS  Google Scholar 

  • van Kan PL, Horn KM, Gibson AR (1994) The importance of hand use to discharge of interpositus neurones of the monkey. J Physiol 480(Pt 1):171–190

    PubMed  PubMed Central  Google Scholar 

  • Weiss C, Houk JC, Gibson AR (1990) Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J Neurophysiol 64(4):1170–1185

    CAS  PubMed  Google Scholar 

  • White JJ, Arancillo M, Stay TL, George-Jones NA, Levy SL, Heck DH, Sillitoe RV (2014) Cerebellar zonal patterning relies on Purkinje cell neurotransmission. J Neurosci 34(24):8231–8245. https://doi.org/10.1523/JNEUROSCI.0122-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witter L, Canto CB, Hoogland TM, de Gruijl JR, De Zeeuw CI (2013) Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits 7:133. https://doi.org/10.3389/fncir.2013.00133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lisberger SG (2014) Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 510(7506):529–532. https://doi.org/10.1038/nature13282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zbarska S, Bloedel JR, Bracha V (2008) Cerebellar dysfunction explains the extinction-like abolition of conditioned eyeblinks after NBQX injections in the inferior olive. J Neurosci 28:10–20

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germund Hesslow .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bengtsson, F., Rasmussen, A., Hesslow, G. (2022). Feedback Control in the Olivocerebellar Loop. In: Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-23810-0_45

Download citation

Publish with us

Policies and ethics