Skip to main content

Digestible and Non-digestible Polysaccharide Roles in Reformulating Foods for Health

  • Chapter
  • First Online:
Reformulation as a Strategy for Developing Healthier Food Products
  • 767 Accesses

Abstract

Structure is a fundamental factor in determining the way that digestible and non-digestible food carbohydrates (mono- and di-saccharides, oligo-saccharides and polysaccharides) influence a range of health outcomes. Much of the influence of carbohydrate structure on health is mediated by its effects on digestive processes throughout the gut. At each region within the gut a hierarchy of carbohydrate-based food structures – monosaccharide, individual polysaccharide, associated polysaccharides, cell walls, plant tissues and food particles – may constrain or enhance digestive processes. The role of carbohydrate structure in health and reformulation for health, through its effects at the gut level, is the focus of this chapter. Emphasis is placed on blood glucose loading, colonic fermentation and distal colonic bulking, because they are at the base of clusters of health outcomes arising from hyperglycaemia, dysbiosis and constipation, respectively. This chapter outlines principles governing choice of carbohydrate ingredients in reformulating for health, based on the role of food structure in function. Precise prescription of formulations is not possible because of the need for empirical testing of products due to the complexity of food component interactions, emergent properties and sensory effects in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berg, T., Singh, J., Hardacre, A., & Boland, M. J. (2012). The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydrate Polymers, 87, 1678–1688.

    Article  CAS  Google Scholar 

  • Bhattarai, R. R., Dhital, S., Wu, P., Chen, X. D., & Gidley, M. J. (2017). Digestion of isolated legume cells in a stomach-duodenum model: Three mechanisms limit starch and protein hydrolysis. Food & Function, 8, 2573–2582.

    Article  CAS  Google Scholar 

  • Borneo, R., & Leon, A. E. (2012). Whole grain cereals: Functional components and health benefits. Food & Function, 3, 110–119.

    Article  CAS  Google Scholar 

  • Brownlee, M. (2005). The pathobiology of diabetic complications – a unifying mechanism. Diabetes, 54, 1615–1625.

    Article  CAS  Google Scholar 

  • Capuano, E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition, 57, 3543–3564.

    Article  CAS  PubMed  Google Scholar 

  • Champ, M., Langkilde, A. M., Brouns, F., Kettlitz, B., & Collet, Y. L. (2003). Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews, 16, 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Coudray, C., Tressol, J. C., Gueux, E., & Rayssiguier, Y. (2003). Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. European Journal of Nutrition, 42, 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, J. H., & Engineer, A. (2018). Denis Burkitt and the origins of the dietary fibre hypothesis. Nutrition Research Reviews, 31, 1–15.

    Article  PubMed  Google Scholar 

  • Dhital, S., & Gidley, M. (2016). Nutritional role of cellulose beyond faecal bulking. Journal of Nutrition & Intermediary Metabolism, 4, 25–25.

    Article  Google Scholar 

  • Dhital, S., Bhattarai, R. R., Gorham, J., & Gidley, M. J. (2016). Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food & Function, 7, 1367–1379.

    Article  CAS  Google Scholar 

  • Dikeman, C. L., & Fahey, G. C., Jr. (2006). Viscosity as related to dietary fiber: A review. Critical Reviews in Food Science and Nutrition, 46, 649–663.

    Article  CAS  PubMed  Google Scholar 

  • Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutrition Research Reviews, 23, 65–134.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, S., Tapsell, L. C., & Beck, E. J. (2018). Creation of a fibre categories database to quantify different dietary fibres. Journal of Food Composition and Analysis, 71, 36–43.

    Article  CAS  Google Scholar 

  • Gelinas, P. (2013). Preventing constipation: A review of the laxative potential of food ingredients. International Journal of Food Science and Technology, 48, 445–467.

    Article  CAS  Google Scholar 

  • Gidley, M. J. (2013). Hydrocolloids in the digestive tract and related health implications. Current Opinion in Colloid and Interface Science, 18, 371–378.

    Article  CAS  Google Scholar 

  • Gill, P. A., van Zelm, M. C., Muir, J. G., & Gibson, P. R. (2018). Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics, 48, 15–34.

    Article  CAS  Google Scholar 

  • Govers, M., Gannon, N. J., Dunshea, F. R., Gibson, P. R., & Muir, J. G. (1999). Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: A study in pigs. Gut, 45, 840–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabitske, H., & Slavin, J. (2009). Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition, 49, 327–360.

    Article  CAS  PubMed  Google Scholar 

  • Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426, 3838–3850.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, N. W., & Sams, A. (2018). The microbiotic highway to health-new perspective on food structure, gut microbiota, and host inflammation. Nutrients, 10, E1590.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. Quarterly Review of Biology, 90, 251–268.

    Article  PubMed  Google Scholar 

  • Holt, S. H. A., & Miller, J. B. (1994). Particle-size, satiety and the glycemic response. European Journal of Clinical Nutrition, 48, 496–502.

    CAS  PubMed  Google Scholar 

  • Horowitz, M., O'Donovan, D., Jones, K. L., Feinle, C., Rayner, C. K., & Samsom, M. (2002). Gastric emptying in diabetes: Clinical significance and treatment. Diabetic Medicine, 19, 177–194.

    Article  CAS  PubMed  Google Scholar 

  • Howlett, J. F., Betteridge, V. A., Champ, M., Craig, S. A. S., Meheust, A., & Jones, J. M. (2010). The definition of dietary fiber - discussions at the Ninth Vahouny Fiber Symposium: Building scientific agreement. Food & Nutrition Research, 54, 5750.

    Article  Google Scholar 

  • Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21, 8787–8803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kho, Z. Y., & Lal, S. K. (2018). The human gut microbiome - a potential controller of wellness and disease. Frontiers in Microbiology, 9, 1835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, C. H. (2018). Immune regulation by microbiome metabolites. Immunology, 154, 220–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, E., Coelho, D., & Blachier, F. (2013). Review of the association between meat consumption and risk of colorectal cancer. Nutrition Research, 33, 983–994.

    Article  CAS  PubMed  Google Scholar 

  • Lentle, R. G. (2018). Deconstructing the physical processes of digestion: Reductionist approaches may provide greater understanding. Food & Function, 9, 4069–4084.

    Article  CAS  Google Scholar 

  • Lentle, R. G., & de Loubens, C. (2015). A review of mixing and propulsion of chyme in the small intestine: Fresh insights from new methods. Journal of Comparative Physiology B, 185, 369–387.

    Article  CAS  Google Scholar 

  • Mackie, A., Bajka, B., & Rigby, N. (2016a). Roles for dietary fibre in the upper GI tract: The importance of viscosity. Food Research International, 88, 234–238.

    Article  CAS  Google Scholar 

  • Mackie, A., Rigby, N., Harvey, P., & Bajka, B. (2016b). Increasing dietary oat fibre decreases the permeability of intestinal mucus. Journal of Functional Foods, 26, 418–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandalari, G., Merali, Z., Ryden, P., Chessa, S., Bisignano, C., Barreca, D., Bellocco, E., Lagana, G., Faulks, R. M., & Waldron, K. W. (2018). Durum wheat particle size affects starch and protein digestion in vitro. European Journal of Nutrition, 57, 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Marlett, J. A., & Fischer, M. H. (2002). A poorly fermented gel from psyllium seed husk increases excreta moisture and bile acid excretion in rats. Journal of Nutrition, 132, 2638–2643.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S., & Monro, J. (2012). Kiwifruit remnants from digestion in vitro have functional attributes of potential importance to health. Food Chemistry, 135, 2188–2194.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S., Edwards, H., Hedderley, D., Podd, J., & Monro, J. (2017). Kiwifruit non-sugar components reduce glycaemic response to co-ingested cereal in humans. Nutrients, 9, E1195.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, S., Monro, J., & Hedderley, D. (2008). Effect of processing on slowly digestible starch and resistant starch in potato. Starch-Starke, 60, 500–507.

    Article  CAS  Google Scholar 

  • Monro, J. A. (2000). Faecal bulking index: A physiological basis for dietary management of bulk in the distal colon. Asia Pacific Journal of Clinical Nutrition, 9, 74–81.

    Article  CAS  PubMed  Google Scholar 

  • Monro, J. A. (2001). Wheat bran equivalents based on faecal bulking indices for dietary management of faecal bulk. Asia Pacific Journal of Clinical Nutrition, 10, 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Monro, J. A. (2004). Virtual food components: Functional food effects expressed as food components. European Journal of Clinical Nutrition, 58, 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Monro, J. A., & Mishra, S. (2010). Digestion-resistant remnants of vegetable vascular and parenchyma tissues differ in their effects in the large bowel of rats. Food Digestion, 1, 47–56.

    Article  CAS  Google Scholar 

  • Monro, J., & Mishra, S. (2009). Nutritional value of potatoes: Digestibility, glycemic index, and glycemic impact. In L. Kaur & J. Singh (Eds.), Advances in potato chemistry and technology. Burlington: Academic Press.

    Google Scholar 

  • Monro, J., Mishra, S., Redman, C., Somerfield, S., & Ng, J. (2016). Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model. Food & Function, 7, 2645–2654.

    Article  CAS  Google Scholar 

  • Morita, T., Kasaoka, S., Hase, K., & Kiriyama, S. (1999). Psyllium shifts the fermentation site of high-amylose cornstarch toward the distal colon and increases fecal butyrate concentration in rats. Journal of Nutrition, 129, 2081–2087.

    Article  CAS  PubMed  Google Scholar 

  • Ndeh, D., Rogowski, A., Cartmell, A., Luis, A. S., Basle, A., Gray, J., Venditto, I., Briggs, J., Zhang, X., Labourel, A., Terrapon, N., Buffetto, F., Nepogodiev, S., Xiao, Y., Field, R. A., Zhu, Y., O'Neill, M. A., Urbanowicz, B. R., York, W. S., Davies, G. J., Wade Abbott, D., Ralet, M.-C., Martens, E. C., Henrissat, B., & Harry J. Giilbert. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 544, 65, 548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olausson, E. A., Alpsten, M., Larsson, A., Mattsson, H., Andersson, H., & Attvall, S. (2008). Small particle size of a solid meal increases gastric emptying and late postprandial glycaemic response in diabetic subjects with gastroparesis. Diabetes Research and Clinical Practice, 80, 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Palit, S., Lunniss, P. J., & Mark Scott, S. (2012). The physiology of human defecation. Digestive Diseases and Sciences, 57, 1445–1464.

    Article  PubMed  Google Scholar 

  • Priyadarshini, M., Kotlo, K. U., Dudeja, P. K., & Layden, B. T. (2018). Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Comprehensive Physiology, 8, 1091–1115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranawana, V., Monro, J. A., Mishra, S., & Henry, C. J. K. (2010). Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutrition Research, 30, 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, J. A., Ryden, P., Botham, R. L., Reading, S., Gibson, G., & Ring, S. G. (2001). Structural properties of diet-derived polysaccharides and their influence on butyrate production during fermentation. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 34, 567–573.

    Article  CAS  Google Scholar 

  • Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch – a review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.

    Article  CAS  Google Scholar 

  • Scazzina, F., Siebenhandl-Ehn, S., & Pellegrini, N. (2013). The effect of dietary fibre on reducing the glycaemic index of bread. British Journal of Nutrition, 109, 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  • Seal, C. J., & Brownlee, I. A. (2015). Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proceedings of the Nutrition Society, 74, 313–319.

    Article  PubMed  Google Scholar 

  • Stephen, A. M., Champ, M. M. J., Cloran, S. J., Fleith, M., van Lieshout, L., Mejborn, H., & Burley, V. J. (2017). Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews, 30, 149–190.

    Article  CAS  PubMed  Google Scholar 

  • Svihus, B., & Hervik, A. K. (2016). Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: A review. Starch-Starke, 68, 302–313.

    Article  CAS  Google Scholar 

  • Takahashi, T., & Sakata, T. (2004). Viscous properties of pig cecal contents and the contribution of solid particles to viscosity. Nutrition, 20, 377–382.

    Article  PubMed  Google Scholar 

  • Talley, N. J. (2004a). Definitions, epidemiology, and impact of chronic constipation. Reviews in Gastroenterological Disorders, 4(Suppl 2), S3–S10.

    PubMed  Google Scholar 

  • Talley, N. J. (2004b). Management of chronic constipation. Reviews in Gastroenterological Disorders, 4, 18–24.

    PubMed  Google Scholar 

  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.

    Article  CAS  PubMed  Google Scholar 

  • Trowell, H. (1976). Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. American Journal of Clinical Nutrition, 29, 417–427.

    Article  CAS  PubMed  Google Scholar 

  • van Craeyveld, V., Swennen, K., Dornez, E., van de Wiele, T., Marzorati, M., Verstraete, W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., de Ketelaere, B., Broekaert, W. F., Delcour, J. A., & Courtin, C. M. (2008). Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. Journal of Nutrition, 138, 2348–2355.

    Article  PubMed  CAS  Google Scholar 

  • Warren, F. J., Fukuma, N. M., Mikkelsen, D., Flanagan, B. M., Williams, B. A., Lisle, A. T., Cuiv, P. O., Morrison, M., & Gidley, M. J. (2018). Food starch structure impacts gut microbiome composition. mSphere, 3, e00086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whistler, R. L., & BeMiller, J. N. (1997). Carbohydrate chemistry for food scientists. St. Paul: Eagan Press.

    Google Scholar 

  • Zhang, B., Dhital, S., & Gidley, M. J. (2015). Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science & Technology, 43, 18–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Monro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monro, J.A. (2019). Digestible and Non-digestible Polysaccharide Roles in Reformulating Foods for Health. In: Raikos, V., Ranawana, V. (eds) Reformulation as a Strategy for Developing Healthier Food Products. Springer, Cham. https://doi.org/10.1007/978-3-030-23621-2_3

Download citation

Publish with us

Policies and ethics