Skip to main content

Visualisation of Structure and Processes on Temporal Networks

  • Chapter
  • First Online:
Temporal Network Theory

Abstract

The temporal dimension increases the complexity of network models but also provides more detailed information about the sequence of connections between nodes allowing a more detailed mapping of processes taking place on the network. The visualisation of such evolving structures thus permits faster identification of non-trivial activity patterns and provides insights about the mechanisms driving the dynamics on and of networks. In this chapter, we introduce key concepts and discuss visualisation methods of temporal networks based on 2D layouts where nodes correspond to horizontal lines with circles to represent active nodes and vertical edges connecting those active nodes at given times. We introduce and discuss algorithms to re-arrange nodes and edges to reduce visual clutter, layouts to highlight node and edge activity, and visualise dynamic processes on temporal networks. We illustrate the methods using real-world temporal network data of face-to-face human contacts and simulated random walk and infection dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Art-conscious researchers may also call for aesthetic visualisations.

  2. 2.

    To our knowledge, the oldest available online record suggests that the term ridiculogram was coined by Marc Vidal as early as 2007 (www.cs.unm.edu/~aaron/blog/archives/2007/05/ipam_random_and.htm).

  3. 3.

    The snapshot τ coincides with time t if δ = 1.

  4. 4.

    Somewhat similar to the force-directed graph drawing algorithm for the structural layout [9], except that in our case nodes’ positions are fixed.

  5. 5.

    This method is similar to heatmap grids [37].

  6. 6.

    We use the notation of snapshots τ rather than time t to emphasise that measures take into account snapshots, see Sect. 2 for definitions.

  7. 7.

    In this particular face-to-face experiment, badges were not allowed outside the school.

  8. 8.

    Available at https://github.com/jgraph/jgraphx. No need of separate installation to run DyNetVis.

References

  1. Newman, M.: Networks: An Introduction. OUP, Oxford (2010)

    Book  MATH  Google Scholar 

  2. da Fontoura Costa, L., Oliveira, O.N. Jr., Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)

    Article  ADS  Google Scholar 

  3. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    Article  ADS  Google Scholar 

  4. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, Los Altos (1999)

    Google Scholar 

  5. Sales, T.: Llull as computer scientist, or why llull was one of us. In: Sierra, C., Fidora, A. (eds.) Ramon Llull: From the Ars Magna to Artificial Intelligence, chap. 2, pp. 25–38. Artificial Intelligence Research Institute, Barcelona (2011)

    Google Scholar 

  6. Moreno, J.L.: Who Shall Survive? A New Approach to the Problem of Human Interrelations. Nervous and Mental Disease Publishing Co., Washington (1934)

    Google Scholar 

  7. Lima, M.: Visual Complexity. Mapping Patterns of Information. Princeton Architectural Press, New York (2011)

    Google Scholar 

  8. Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation. IEEE Trans. Vis. Comput. Graph. 13(6), 1216–1223 (2007)

    Article  Google Scholar 

  9. Tamassia, R.: Handbook of Graph Drawing and Visualization. Chapman and Hall/CRC, London (2013)

    MATH  Google Scholar 

  10. Rocha, L.E.C.: Dynamics of air transport networks: a review from a complex systems perspective. Chin. J. Aeronaut. 30, 469–478 (2017)

    Article  Google Scholar 

  11. Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)

    Article  ADS  Google Scholar 

  12. Rocha, L.E.C., Masuda, N., Holme, P.: Sampling of temporal networks: methods and biases. Phys. Rev. E 96(5), 052302 (2017)

    Article  ADS  Google Scholar 

  13. Karsai, M., Jo, H.-H., Kaski, K.: Bursty Human Dynamics. Springer, Berlin (2018)

    Book  Google Scholar 

  14. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011)

    Article  Google Scholar 

  15. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: Eurographics Conference on Visualization (EuroVis) (2014)

    Google Scholar 

  16. Sazama, P.J.: An overview of visualizing dynamic graphs. Unpublished (2015)

    Google Scholar 

  17. Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PLoS One 5(1), e8694 (2010)

    Article  ADS  Google Scholar 

  18. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)

    Article  Google Scholar 

  19. Bach, B., Pietriga, E., Fekete, J.-D.: Visualizing dynamic networks with matrixcubes. In: Proceedings of the 2014 Annual Conference on Human Factors in Computing Systems (CHI2014), pp. 877–886. ACM, New York (2014)

    Google Scholar 

  20. Jerding, D.F., Stasko, J.T.: The information mural: a technique for displaying and navigating large information spaces. IEEE Trans. Vis. Comput. Graph. 4(3), 257–271 (1998)

    Article  Google Scholar 

  21. van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Dynamic network visualization with extended massive sequence views. IEEE Trans. Vis. Comput. Graph. 20(8), 1087–1099 (2014)

    Article  Google Scholar 

  22. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  23. Bach, B.: Unfolding dynamic networks for visual exploration. IEEE Comput. Graph. Appl. 36, 74–82 (2016)

    Article  Google Scholar 

  24. Linhares, C.D.G., Travençolo, B.A.N., Paiva, J.G.S., Rocha, L.E.C.: DyNetVis: a system for visualization of dynamic networks. In: Proceedings of the Symposium on Applied Computing, SAC ’17, (Marrakech, Morocco), pp. 187–194. ACM, New York (2017)

    Google Scholar 

  25. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Behrisch, M., Bach, B., Henry Riche, N., Schreck, T., Fekete, J.-D.: Matrix reordering methods for table and network visualization. In: Computer Graphics Forum, vol. 35, pp. 693–716. Wiley Online Library (2016)

    Google Scholar 

  27. Six, J.M., Tollis, I.G.: A framework and algorithms for circular drawings of graphs. J. Discrete Algoritms 4, 25–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mi, P., Sun, M., Masiane, M., Cao, Y., North, C.: Interactive graph layout of a million nodes. Informatics 3, 23 (2016)

    Article  Google Scholar 

  29. Archambault, D., Purchase, H.C.: Can animation support the visualisation of dynamic graphs? Inf. Sci. 330, 495–509 (2016)

    Article  Google Scholar 

  30. Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van Wijk, J.J., van Deursen, A.: Understanding execution traces using massive sequence and circular bundle views. In: 15th IEEE International Conference on Program Comprehension ICPC, pp. 49–58. IEEE Computer Society, Washington (2007)

    Google Scholar 

  31. Ware, C.: Information Visualization: Perception for Design, vol. 3. Morgan Kaufmann Publishers Inc., Los Altos (2013)

    Google Scholar 

  32. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)

    Article  ADS  Google Scholar 

  34. Linhares, C.D.G., Ponciano, J.R., Pereira, F.S.F., Rocha, L.E.C., Paiva, J.G.S., Travençolo, B.A.N.: A scalable node ordering strategy based on community structure for enhanced temporal network visualization. Comput. Graph. (2019). https://doi.org/10.1016/j.cag.2019.08.006

    Article  Google Scholar 

  35. Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3, 3006 (2013)

    Article  ADS  Google Scholar 

  36. Zhao, Y., She, Y., Chen, W., Lu, Y., Xia, J., Chen, W., Liu, J., Zhou, F.: EOD edge sampling for visualizing dynamic network via massive sequence view. IEEE Access 6, 53006–53018 (2018)

    Article  Google Scholar 

  37. Wilke, C.: Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O’Reilly, Newton (2019)

    Google Scholar 

  38. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLOS One 10(9), e0136497 (2015)

    Article  Google Scholar 

  39. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miller, R.G.: Survival Analysis. Wiley, London (1997)

    Google Scholar 

  41. Starnini, M., Baronchelli, A., Barrat, A., Pastor-Satorras, R.: Random walks on temporal networks. Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  42. Rocha, L.E.C., Masuda, N.: Random walk centrality for temporal networks. New J. Phys. 16, 063023 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  44. Rocha, L.E.C., Blondel, V.D.: Bursts of vertex activation and epidemics in evolving networks. PLOS Comput. Biol. 9, e1002974 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C.J., Schweitzer, F.: Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nat. Commun. 5, 5024 (2014)

    Article  ADS  Google Scholar 

  46. Huang, W., Eadesband, P., Hong, S.-H.: Measuring effectiveness of graph visualizations: a cognitive load perspective. Inf. Vis. 8(3), 139–152 (2009)

    Article  Google Scholar 

  47. Keim, D.: Visual exploration of large data sets. Commun. ACM 44(8), 38–44 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. C. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linhares, C.D.G., Ponciano, J.R., Paiva, J.G.S., Travençolo, B.A.N., Rocha, L.E.C. (2019). Visualisation of Structure and Processes on Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_5

Download citation

Publish with us

Policies and ethics