Skip to main content

Abstract

In this paper, we aim to use stochastic modeling approaches in order to build a model for an anaerobic digestion process. We consider a two-species and two-substrate process which is usually modeled in the deterministic context using the Anaerobic Model AM2. This model features four states representing, respectively, the concentrations of the substrate, the acidogenic bacteria, the volatile fatty acids, and the methanogenic bacteria. We propose here to build a stochastic version of this model by using three types of models: the pure jump Markov process, the Poisson model, and the Gaussian model. The pure jump Markov process is the most detailed one, it is hence valid at a microscopic size, i.e., for small-size bacteria populations, whereas the two others, which are two discrete-time approximations of the first model, are valid for the mesoscopic and macroscopic scales, which means, for medium-size and large-size bacteria populations. We also present the diffusion model which is the continuous version of the Gaussian approximation and is valid for mesoscopic and macroscopic scales. The validity domain is justified in the paper and a brief comparison between these models and with respect to the deterministic AM2 model is discussed and presented by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Batstone, J. Keller, I. Angelidaki, S.V. Kalyuzhnyi, S.G. Pavlostathis, A. Rozzi, W.T.M. Sanders, H. Siegrist, V. A. Vavilin, The IWA anaerobic digestion model no. 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002)

    Google Scholar 

  2. F. Blumensaat, J. Keller, Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 39(1), 171–183 (2005)

    Google Scholar 

  3. C. Rosen, D. Vrecko, K.V. Gernaey, M-N. Pons, U. Jeppsson, Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink. Water Sci. Technol. 54(4), 11–19 (2006)

    Article  Google Scholar 

  4. D.J. Batstone, J. Keller, J. P. Steyer, A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Sci. Technol. 54(4), 1–10 (2006)

    Article  Google Scholar 

  5. S. Hassam, B. Cherki, E. Ficara, J. Harmand, Towards a systematic approach to reduce complex bioprocess models—Application to the ADM1, in 2012 20th Mediterranean Conference on Control & Automation (MED) (IEEE, Piscataway, 2012), pp. 573–578

    Google Scholar 

  6. O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, J-P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)

    Article  Google Scholar 

  7. J. Hess, O. Bernard, Advanced dynamical risk analysis for monitoring anaerobic digestion process. Biotechnol. Prog. 25(3), 643–653 (2009)

    Article  Google Scholar 

  8. A. Rincon, F. Angulo, G. Olivar, Control of an anaerobic digester through normal form of fold bifurcation. J. Process Control 19(8), 1355–1367 (2009)

    Article  Google Scholar 

  9. J.P. Steyer, O. Bernard, D. Batstone, I. Angelidaki, Lessons learnt from 15 years of ICA in anaerobic digesters. Water Sci. Technol. 53(4–5), 25–33 (2006)

    Article  Google Scholar 

  10. J. Hess, O. Bernard, Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. J. Process Control 18(1), 71–79 (2008)

    Article  Google Scholar 

  11. B. Benyahia, T. Sari, B. Cherki, J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. J. Process Control 22(6), 1008–1019 (2012)

    Article  Google Scholar 

  12. B. Benyahia, T. Sari, B. Cherki, J. Harmand, Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP)–the Anaerobic Model AM2b. Chem. Eng. J. 228, 1011–1022 (2013)

    Article  Google Scholar 

  13. S. Hassam, E. Ficara, A. Leva, J. Harmand, A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochem. Eng. J. 99, 193–203 (2015)

    Google Scholar 

  14. F. Campillo, M. Joannides, I. Larramendy-Valverde, Stochastic modeling of the chemostat. Ecol. Model. 222(15), 2676–2689 (2011)

    Article  Google Scholar 

  15. F. Campillo, M. Joannides, Modeles logistiques deterministes et stochastiques, in CARI 2010 (2010), pp. 110–118

    Google Scholar 

  16. J. Monod, The growth of bacterial cultures. Annu. Rev. Microbiol. 3(1), 371–394 (1949)

    Article  Google Scholar 

  17. H.L. Smith, P.E. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  18. D.J. Wilkinson, Stochastic Modelling for Systems Biology (Chapman and Hall/CRC, Milton, 2006)

    MATH  Google Scholar 

  19. D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

    Article  Google Scholar 

  20. S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, vol. 282 (Wiley, New York, 2009)

    MATH  Google Scholar 

  21. D.F. Anderson, A. Ganguly, T.G. Kurtz et al., Error analysis of tau-leap simulation methods. Ann. Appl. Probab. 21(6), 2226–2262 (2011)

    Article  MathSciNet  Google Scholar 

  22. T. Li, Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. Multiscale Model. Simul. 6(2), 417–436 (2007)

    Article  MathSciNet  Google Scholar 

  23. M. Rathinam, L.R. Petzold, Y. Cao, D.T. Gillespie, Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model. Simul. 4(3), 867–895 (2005)

    Article  MathSciNet  Google Scholar 

  24. D.T. Gillespie, L.R. Petzold, Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. 119(16), 8229–8234 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelkader, O.H., Abdelkader, A.H. (2019). Modeling Anaerobic Digestion Using Stochastic Approaches. In: Mondaini, R. (eds) Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-23433-1_24

Download citation

Publish with us

Policies and ethics