Skip to main content

Noah’s Flood—Probing an Ancient Narrative Using Geoscience

  • Chapter
  • First Online:
Palaeohydrology

Part of the book series: Geography of the Physical Environment ((GEOPHY))

Abstract

This article sheds new light on the narrative of Noah’s Flood (Genesis Flood, Great Deluge) from a geoscientific point of view. It outlines the four most popular hypotheses: (i) the postglacial–early Holocene flooding of the Persian/Arabian Gulf which fell dry during the last glacial lowstand of the sea; (ii) a cosmic impact by a meteorite ca. 10,000 years ago, which triggered tsunami waves worldwide; (iii) the rapid re-filling of the Black Sea basin when the early Holocene rise of the Mediterranean Sea surpassed the Bosphorus sill about 8400 years ago; and (iv) the occurrence of one or several mega-floods in Central and Lower Mesopotamia, which left imprints in and around ancient settlement mounds (tells) such as Ur and Uruk. The pros and cons of these scenarios are discussed. Based on geological and sedimentological evidence the authors argue for the latter theory and describe future research venues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.imdb.com/title/tt1341253/videoplayer/vi3808732697?ref_=tt_ov_vi.

  2. 2.

    Woolley (1955:68) described the flood layer as follows: “As to the character of the silt there could be no doubt; the analysis … makes it perfectly clear that it is the type of deposit normally left by the Euphrates in flood, collected from the upper reaches of the river; it is fluvial, not marine. The practical absence of stratification shows that it was deposited all at one time and is not the result of repeated minor floodings… Over the greater part of the area… no break in the uniformity of the deposit from top to bottom could be detected; here and there might be a ‘pocket’ of material of a different character, rubbish such as would be carried along by the swirling waters as they passed over an inhabited site, but such were isolated and discontinuous…”

  3. 3.

    It is noteworthy that the first prosaic texts are in cuneiform lettering and date from the late fourth millennium BC.

  4. 4.

    This kind of catastrophic scenario had already been favoured by Woolley. He ends his comment about the Flood layer: …. (a riverine) “flood eight metres deep may well have spread over what was for the farmers of the Mesopotamian valley the whole world” (Woolley 1955:19).

References

  • Aksu AE, Hiscott RN, Yasar D (1999) Oscillating Quaternary water levels of the Marmara Sea and vigorous outflow into the Aegean Sea from the Marmara Sea–Black Sea drainage corridor. Mar Geol 153: 275–302

    Article  Google Scholar 

  • Aksu AE, Hiscott RN, Mudie PJ et al (2002) Persistent Holocene outflow from the Black Sea to the Eastern Mediterranean contradicts Noah’s flood hypothesis. GSA Today 12(5):4–10

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F et al (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Aqrawi A (2001) Stratigraphic signatures of climatic change during the Holocene evolution of the Tigris-Euphrates delta, Lower Mesopotamia. Glob Planet Change 28:267–283

    Article  Google Scholar 

  • Ballard RD, Coleman DF, Rosenberg GD (2000) Further evidence of abrupt Holocene drowning of the Black Sea shelf. Mar Geol 170:253–261

    Article  Google Scholar 

  • Ballard RD, Hiebert FT, Coleman DF et al (2001) Deepwater archaeology of the Black Sea: the 2000 season at Sinop, Turkey. Am J Archaeol 105:607–623

    Article  Google Scholar 

  • Becker H, Fassbinder JWE (2001) Uruk—city of Gilgamesh (Iraq). First tests in 2001 for magnetic prospecting. Monuments Sites 6:93–97

    Google Scholar 

  • Bikoulis P (2015) Evaluating the impact of Black Sea flooding on the Neolithic of Northern Turkey. World Archaeol 47(5):756–775

    Article  Google Scholar 

  • Boehmer RM (1997) Uruk—Warka. In: Meyers EM (ed) The Oxford encyclopedia of archaeology in the Near East. Oxford University Press, Oxford, pp 294–298

    Google Scholar 

  • Bourgeois J, Hansen TA, Wiberg PL et al (1988) A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science 241:567–570

    Article  Google Scholar 

  • Brückl E, Brückl J, Heuberger H (2001) Present structure and prefailure topography of the giant rockslide of Köfels. Z Gletscherk Glazialgeol 37(1):49–79

    Google Scholar 

  • Brückner H (2003) Uruk—a geographic and palaeo-ecologic perspective on a famous ancient city in Mesopotamia. Geoöko 24:229–248

    Google Scholar 

  • Brückner H (2013a) Uruk—aus geoarchäologischer Sicht. In: van Ess M, Hilgert M, Salje B (eds) Uruk. 5000 Jahre Megacity. Begleitband zur Ausstellung “Uruk—5000 Jahre Megacity” im Pergamonmuseum. Curt-Engelhorn-Stiftung für die Reiss-Engelhorn-Museen, Deutsches Archäeologischen Institut—Orient-Abteilung, Deutsche Orient-Gesellschaft e. V., Vorderasiatisches Museum Berlin. Imhof Verlag, Petersberg, pp 343–351

    Google Scholar 

  • Brückner H (2013b) Wasserstraßen im Wüstensand. Uruk aus geoarchäologischer Perspektive. Antike Welt 3:18–24

    Google Scholar 

  • Brückner H, Herda A, Kerschner M et al (2017) Life cycle of estuarine island-from the formation to the landlocking of former islands in the environs of Miletos and Ephesos in western Asia Minor (Turkey). J Archaeol Sci Rep 12:876–894

    Google Scholar 

  • Bryant E (2008) Tsunami—The underrated hazard, 2nd edn. Springer, Berlin

    Google Scholar 

  • Bryant E, Haslett SK, Scheffers S et al (2010) Tsunami chronology supporting late holocene impacts. J Siberian Fed Univ Eng Technol 3(1):63–71

    Google Scholar 

  • Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. Geol Soc Am Spec Paper 356:55–68

    Google Scholar 

  • Deutsch A, Koeberl C, Blum JD et al (1994) The impact-flood connection: does it exist? Terra Nova 6:644–650

    Article  Google Scholar 

  • Engel M, Brückner H (2014) The South Qatar survey project (SQSP)—preliminary findings on Holocene coastal changes and geoarchaeological archives. Z Orient-Archäol 7:290–301

    Google Scholar 

  • Engel M, Brückner H (2018) Holocene climate variability of Mesopotamia and its impact on the history of civilization. EarthArXiv. https://doi.org/10.31223/osf.io/s2aqt

  • Erismann T, Heuberger H, Preuss E (1977) Der Bimsstein von Köfels (Tirol), ein Bergsturz-“Friktionit”. Miner Petrol 24(1–2):67–119

    Google Scholar 

  • Evans G, Kirkham A, Carter RA (2002) Quaternary development of the United Arab Emirates Coast: new evidence from Marawah Island, Abu Dhabi. GeoArabia 7(3):441–458

    Google Scholar 

  • Finkel I (2014) The ark before Noah: decoding the story of the flood. Hodder & Stoughton, London

    Google Scholar 

  • Finkelstein, JJ (1962) Mesopotamia. J Near East Stud 21:73–92

    Article  Google Scholar 

  • George AR (2003) The Babylonian Gilgamesh epic: introduction, critical edition and cuneiform texts, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Giosan L, Filip F, Constatinescu S (2009) Was the Black Sea catastrophically flooded in the early Holocene? Quat Sci Rev 28:1–6

    Article  Google Scholar 

  • Goldberg SL, Lau HCP, Mitrovica JX et al (2016) The timing of the Black Sea flood event: Insights from modeling of glacial isostatic adjustment. Earth Planet Sci Lett 452:178–184

    Article  Google Scholar 

  • Herget J (2019) Die Sintflut—Mythos und Realität. Geographische Rundschau (in press)

    Google Scholar 

  • Heyvaert VMA, Baeteman C (2007) Holocene sedimentary evolution and palaeocoastlines of the Lower Khuzestan plain (southwest Iran). Mar Geol 242:83–108

    Article  Google Scholar 

  • Hiscott RN, Aksu AE, Mudie PJ et al (2007) The Marmara Sea gateway since ~16 ky BP: non-catastrophic causes of paleoceanographic events in the Black Sea at 8.4 and 7.5 ky BP. In: Yanko-Hombach V, Gilbert AS, Panin N et al (eds) The Black Sea flood question. Springer, Dordrecht, pp 89–118

    Google Scholar 

  • Jacobsen T (1960) The waters of Ur. Iraq 22:174–185

    Article  Google Scholar 

  • Kelletat D (2003) Tsunami durch impacts von Meteoriten im Quartär? Essen Geogr Arb 35:27–38

    Google Scholar 

  • Kennett DJ, Kennett JP (2007) Influence of Holocene marine transgression and climate change on cultural evolution in southern Mesopotamia. In: Anderson DG, Maasch KA, Sandweiss DH (eds) Climate change and cultural dynamics: a global perspective on Mid-Holocene transitions. Elsevier, Amsterdam, pp 229–264

    Chapter  Google Scholar 

  • Kristan-Tollmann E, Tollmann A (1992) Der Sintflut-Impakt. The Flood impact. Mitt Österr Geol Ges 84:1–63

    Google Scholar 

  • Kristan-Tollmann E, Tollmann A (1994) The youngest big impact on Earth deduced from geological and historical evidence. Terra Nova 6(2):209–217

    Article  Google Scholar 

  • Lambeck K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet Sci Lett 142:43–57

    Article  Google Scholar 

  • Lericolais G (2017) Late Pleistocene environmental factors defining the Black Sea, and submerged landscapes on the Western continental Shelf. In: Flemming NC, Harff J, Moura D et al (eds) Submerged landscapes of the European Continental shelf: Quaternary paleoenvironments. Blackwell-Wiley, Chichester, pp 479–495

    Chapter  Google Scholar 

  • Lokier SW, Bateman MD, Larkin NR et al (2015) Late Quaternary sea-level changes of the Persian Gulf. Quat Res 84:69–81

    Article  Google Scholar 

  • Loumou A, Giourga C (2003) Olive groves: “The life and identity of the Mediterranean”. Agr Hum Values 20:87–95

    Article  Google Scholar 

  • Morozova GS (2005) A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in Lower Mesopotamia. Geoarchaeology 20:401–423

    Article  Google Scholar 

  • Nicolussi K, Spötl C, Thurner A, Reimer PJ (2015) Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria). Geomorphology 243:87–91

    Article  Google Scholar 

  • Parker AG, Armitage SJ, Engel M et al (2018) Geomorphology, geoarchaeology and palaeoenvironments. In: Drechsler P (ed) Dosariyah—an Arabian Neolithic Coastal community in the central Gulf. Archaeopress, Oxford, pp 21–55

    Google Scholar 

  • Plaziat JC, Younis WR (2005) The modern environments of Molluscs in southern Mesopotamia, Iraq: a guide to paleogeographical reconstructions of Quaternary fluvial, palustrine and marine deposits. Carnets Géol CG2005 (A01), https://doi.org/10.4267/2042/1453

  • Pleins JD (2003) When the great abyss opened: classic and contemporary readings of Noah’s Flood. Oxford University Press, Oxford

    Google Scholar 

  • Pollock S (1999) Ancient Mesopotamia. Cambridge University Press, Cambridge

    Google Scholar 

  • Renne PR, Deino AL, Hilgen FJ et al (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339:684–687

    Article  Google Scholar 

  • Ryan WBF (2007) Status of the Black Sea flood hypothesis. In: Yanko-Hombach V, Gilbert AS, Panin N et al (eds) The Black Sea flood question. Springer, Dordrecht, pp 63–88

    Google Scholar 

  • Ryan WBF, Pitman WC (1998) Noah’s flood: the new scientific discoveries about the event that changed history. Touchstone, New York

    Google Scholar 

  • Ryan WBF, Pitman WC, Major CO et al (1997) An abrupt drowning of the Black Sea shelf. Mar Geol 138:119–126

    Article  Google Scholar 

  • Ryan WBF, Major CO, Lericolais G et al (2003) Catastrophic flooding of the Black Sea. Ann Rev Earth Planet Sci 31:525–554

    Article  Google Scholar 

  • Sanlaville P (1989) Considérations sur l’évolution de la Basse Mésopotamie au cours des derniers millénaires. Paléorient 15:5–27

    Article  Google Scholar 

  • Sarnthein M (1972) Sediments and history of the postglacial transgression in the Persian Gulf and Northwest Gulf of Oman. Mar Geol 12:245–266

    Article  Google Scholar 

  • Schwartz M, Hollander D (2000) Annealing, distilling, reheating and recycling: bitumen processing in the Ancient Near East. Paléorient 26:83–91

    Article  Google Scholar 

  • Sissakian VK, Abdul Jab’bar MF, Al-Ansari N et al (2014) Meandering of tributaries of the Tigris River due to mass movements within Iraq. Engineering 6:712–730

    Article  Google Scholar 

  • Suess FE (1936) Der Meteor-Krater von Köfels bei Umhausen im Ötztale, Tirol. Neues Jahrb Mineral Geol Paläontol Abh 72:98–155

    Google Scholar 

  • Surenian R (1986) Scanning electron microscope study of shock features in pumice and gneiss from Köfels (Tyrol, Austria). Mitt Geol Paläontol Innsbruck 15:135–143

    Google Scholar 

  • Teller JT, Glennie KW, Lancaster N et al (2000) Calcareous dunes of the United Arab Emirates and Noah’s Flood: the postglacial reflooding of the Persian (Arabian) Gulf. Quat Int 68–71:297–308

    Article  Google Scholar 

  • Tollmann A, Tollmann E (1993) Und die Sintflut gab es doch. Vom Mythos zur historischen Wahrheit. Droemer Knaur, München

    Google Scholar 

  • Turney CS, Brown H (2007) Catastrophic early Holocene sea level rise, human migration and the Neolithic transition in Europe. Quat Sci Rev 26:2036–2041

    Article  Google Scholar 

  • Uchupi E, Swift SA, Ross DA (1996) Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf. Mar Geol 129:237–269

    Article  Google Scholar 

  • van Ess M, Hilgert M, Salje B (eds) (2013) Uruk. 5000 Jahre Megacity. Begleitband zur Ausstellung “Uruk—5000 Jahre Megacity” im Pergamonmuseum. Curt-Engelhorn-Stiftung für die Reiss-Engelhorn-Museen, Deutsches Archäeologischen Institut—Orient-Abteilung, Deutsche Orient-Gesellschaft e.V., Vorderasiatisches Museum Berlin. Imhof Verlag, Petersberg

    Google Scholar 

  • Verhoeven K (1998) Geomorphological research in the Mesopotamian flood plain. In: Gasche H, Tanret M (eds) Changing watercourses in Babylonia. Towards a reconstruction of the ancient environment in Lower Mesopotamia, vol I. University of Chicago Press, Chicago, pp 159–245

    Google Scholar 

  • Vitaliano DB (2007) Geomythology: geological origins of myths and legends. Geol Soc London Spec Pub 273:1–7

    Article  Google Scholar 

  • Vött A, Brückner H, Kraft JC (2017) Do mythological traditions reflect past geographies? The Acheloos delta (Greece) and the Artemision (Turkey) case studies. Z Geomorph 61(Suppl 1):203–221

    Article  Google Scholar 

  • Woolley CL (1923) Excavations at Ur of the Chaldees. Antiq J 3:311–333

    Article  Google Scholar 

  • Woolley CL (1929) Ur of the Chaldees: a record of seven years of excavation. Reprinted with revisions in 1952 by Harmondsworth, Middlesex, Eng., Penguin Books (German first edition in 1930 as: Ur und die Sintflut. Sieben Jahre Ausgrabungen in Chaldäa, der Heimat Abrahams. F. A. Brockhaus, Leipzig)

    Google Scholar 

  • Woolley L (1955) Ur Excavations, vol. IV: the early periods. A report on the sites and objects prior in date to the Third Dynasty of Ur discovered in the course of the excavations. Publications of the joint expedition of the British Museum and of the Museum of the University of Pennsylvania to Mesopotamia. London, Philadelphia

    Google Scholar 

  • Yanko-Hombach V (2007) Controversy over Noah´s flood in the Black Sea: geological and foraminiferal evidence from the shelf. In: Yanko-Hombach V, Gilbert AS, Panin N et al (eds) The Black Sea flood question. Springer, Dordrecht, pp 149–203

    Google Scholar 

  • Yanko-Hombach V, Gilbert AS, Panin N et al (eds) (2007a) The Black Sea flood question: changes in coastline, climate, and human settlement. Springer, Dordrecht

    Google Scholar 

  • Yanko-Hombach V, Gilbert AS, Dolukhanov P (2007b) Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence. Quat Int 167–168:91–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Brückner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brückner, H., Engel, M. (2020). Noah’s Flood—Probing an Ancient Narrative Using Geoscience. In: Herget, J., Fontana, A. (eds) Palaeohydrology. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-23315-0_7

Download citation

Publish with us

Policies and ethics