Skip to main content

Acoustic Transducer and Its Applications in Biosensors

  • Reference work entry
  • First Online:
Handbook of Cell Biosensors
  • 2162 Accesses

Abstract

An acoustic transducer is a device that converts acoustic energy and electrical energy into each other. When acoustic waves propagate through a medium, its physical properties can be affected by many factors. According to these phenomenon, a wide variety of acoustic wave sensors can be manufactured by means of the acoustic transducer, including quartz crystal microbalance, film bulk acoustic resonator, Rayleigh wave sensor, shear-horizontal surface acoustic wave sensor, surface transverse wave sensor, Love wave sensor, shear-horizontal acoustic plate mode sensor, and flexural plate wave sensor. Nowadays, acoustic wave devices have been widely used for the detection of mass, viscosity, conductivity, and density. They have advantages of high precision, high sensitivity, easy integration, good reliability, small size, light weight, and low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andle JC, Vetelino JF, Lade MW, McAllister DJ (1991) An acoustic plate mode device for biosensor applications. IEEE:483–485

    Google Scholar 

  • Arnau A, Ferrari V, Soares D, Perrot H (2008) Interface electronic systems for AT-cut QCM sensors: a comprehensive review. In: Vives A (ed) Piezoelectric transducers and applications. Springer, Berlin/Heidelberg, pp 117–186

    Chapter  Google Scholar 

  • Baer RL, Flory CA (n.d.) Some limitations on the use of leaky SAW mode sensors in liquids. IEEE:279–284

    Google Scholar 

  • Baer RL, Flory CA, Tom-Moy M, Solomon D (1992) STW chemical sensors. IEEE:293–298

    Google Scholar 

  • Bagwell TL, Bray RC (1987) Novel surface transverse wave resonators with low loss and high Q. IEEE:319–324

    Google Scholar 

  • Ballantine DS Jr, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC et al (1996) Acoustic wave sensors: theory, design and physico-chemical applications. Academic Press

    Google Scholar 

  • Barié N, Rapp M, Sigrist H, Ache HJ (1998) Covalent photolinker-mediated immobilization of an intermediate dextran layer to polymer-coated surfaces for biosensing applications. Biosens Bioelectron 13:855–860

    Article  PubMed  Google Scholar 

  • Bender F, Meimeth F, Dahint R, Grunze M, Josse F (1997) Mechanisms of interaction in acoustic plate mode immunosensors. Sensors Actuators B Chem 40:105–110

    Article  CAS  Google Scholar 

  • Ben-Dov I, Willner I, Zisman E (1997) Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses. Anal Chem 69:3506–3512

    Article  CAS  PubMed  Google Scholar 

  • Bjurstrom J, Wingqvist G, Katardjiev I (2006) Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators. IEEE Trans Ultrason Ferroelectr Freq Control:53

    Google Scholar 

  • Chivukula VS, Shur MS, Čiplys D (2007) Recent advances in application of acoustic, acousto-optic and photoacoustic methods in biology and medicine. Phys Status Solidi A 204:3209–3236

    Article  CAS  Google Scholar 

  • Coté GL, Lec RM, Pishko MV (2003) Emerging biomedical sensing technologies and their applications. IEEE Sensors J 3:251–266

    Article  CAS  Google Scholar 

  • Deobagkar DD, Limaye V, Sinha S, Yadava RDS (2005a) Acoustic wave immunosensing of Escherichia coli in water. Sensors Actuators B Chem 104:85–89

    Article  CAS  Google Scholar 

  • Deobagkar DD, Limaye V, Sinha S, Yadava RDS (2005b) Acoustic wave immunosensing of Escherichia coli in water. Sensors Actuators B Chem 104:85–89

    Article  CAS  Google Scholar 

  • Du J, Harding GL, Ogilvy JA, Dencher PR, Lake M (1996) A study of Love-wave acoustic sensors. Sensors Actuators A Phys 56:211–219

    Article  CAS  Google Scholar 

  • Ferrari V, Lucklum R (2009) Overview of acoustic-wave microsensors, Piezoelectric transducers and applications. Springer, pp 39–62

    Google Scholar 

  • Francis, LA (2000) SAW sensors, bachelor’s thesis, Université caholique de Louvain

    Google Scholar 

  • Fung YS, Wong YY (2001) Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Anal Chem 73:5302–5309

    Article  CAS  PubMed  Google Scholar 

  • Furtado LM, Su H, Thompson M, Mack DP, Hayward GL (1999) Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector. Anal Chem 71:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Gabl R, Feucht HD, Zeininger H, Eckstein G, Schreiter M, Primig R et al (2004) First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosens Bioelectron 19:615–620

    Article  CAS  PubMed  Google Scholar 

  • Gabl R, Green E, Schreiter M, Feucht HD, Zeininger H, Primig R et al (2011) Novel integrated FBAR sensors: a universal technology platform for bio-and gasdetection. IEEE:1184–1188

    Google Scholar 

  • Gizeli E, Goddard NJ, Lowe CR, Stevenson AC (1992a) A Love plate biosensor utilising a polymer layer. Sensors Actuators B Chem 6:131–137

    Article  CAS  Google Scholar 

  • Gizeli E, Stevenson AC, Goddard NJ, Lowe CR (1992b) A novel Love-plate acoustic sensor utilizing polymer overlayers. IEEE Trans Ultrason Ferroelectr Freq Control 39:657–659

    Article  CAS  PubMed  Google Scholar 

  • Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors-Part I. Anal Chem (Washington), (United States) 65

    Google Scholar 

  • Gronewold TMA (2007) Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges. Anal Chim Acta 603:119–128

    Article  CAS  PubMed  Google Scholar 

  • Hartmann CS, Abbott BP (1989) Overview of design challenges for single phase unidirectional SAW filters, Ultrasonics Symposium, 1989 Proceedings, IEEE, 1989, vol 1, pp 79–89

    Google Scholar 

  • Hechner J, Soluch W (2005) Pseudo surface acoustic wave dual delay line on 41 YX LiNbO 3 for liquid sensors. Sensors Actuators B Chem 111:436–440

    Article  CAS  Google Scholar 

  • Hengerer A, Kösslinger C, Decker J, Hauck S, Queitsch I, Wolf H et al (1999) Determination of phage antibody affinities to antigen by a microbalance sensor system. BioTechniques 26:956–965

    Article  CAS  PubMed  Google Scholar 

  • Herrmann F, Weihnacht M, Buttgenbach S (2001) Properties of sensors based on shearhorizontal surface acoustic waves in LiTaO/sub 3//SiO/sub 2/and quartz/SiO/sub 2/structures. IEEE Trans Ultrason Ferroelectr Freq Control 48:268–273

    Article  CAS  PubMed  Google Scholar 

  • Höök F, Ray A, Nordén B, Kasemo B (2001) Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shearwave attenuation measurements. Langmuir 17:8305–8312

    Article  CAS  Google Scholar 

  • Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors? Angew Chem Int Ed 39:4004–4032

    Article  CAS  Google Scholar 

  • Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57:1770–1771

    Article  CAS  Google Scholar 

  • Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  PubMed  CAS  Google Scholar 

  • Lec RM (2014) Acoustic wave sensors. Arch Acoust 21:179194

    Google Scholar 

  • Lewis M (1977) Surface skimming bulk wave, SSBW. IEEE:744–752

    Google Scholar 

  • Lin Z, Yip CM, Joseph IS, Ward MD (1993) Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal Chem 65:1546–1551

    Article  CAS  Google Scholar 

  • Link M (2006) Study and realization of shear wave mode solidly mounted film bulk acoustic resonators (FBAR) made of c-axis inclined zinc oxide (ZnO) thin films: application as gravimetric sensors in liquid environments

    Google Scholar 

  • Love AEH (2015) Some problems of geodynamics. Cambridge University Press

    Google Scholar 

  • Milsom RF, Reilly NHC, Redwood M (1977) Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers. IEEE Trans Sonics Ultrason 24:147–166

    Article  Google Scholar 

  • Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  PubMed  Google Scholar 

  • Powell DA, Kalantar-zadeh K, Ippolito S, Wlodarski W (2002) A layered SAW device based on ZnO/LiTaO/sub 3/for liquid media sensing applications. IEEE:493–496

    Google Scholar 

  • Rapp M, Wessa T, Ache HJ (1995) Modification of commercially available low-loss SAW devices towards an immunosensor for in-situ measurements in water. IEEE:433–436

    Google Scholar 

  • Richert L, Lavalle P, Vautier D, Senger B, Stoltz JF, Schaaf P et al (2002) Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 3:1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Gaso M-I, March-Iborra C, Montoya-Baides Á, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9:5740–5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sant W, Pourciel ML, Launay J, Do Conto T, Martinez A, Temple-Boyer P (2003) Development of chemical field effect transistors for the detection of urea. Sensors Actuators B Chem 95:309–314

    Article  CAS  Google Scholar 

  • Sauerbrey GZ (1959) Use of quartz vibration for weighing thin films on a microbalance. Z Phys 155:206–212

    Article  CAS  Google Scholar 

  • Sauerbrey GZ (1991) The use of quartz crystal oscillators for weighing thin layers and for microweighing applications

    Google Scholar 

  • Smith JP, Hinson-Smith V (2006) Commercial SAW sensors move beyond military and security applications. Anal Chem 78:3505–3507

    Article  CAS  PubMed  Google Scholar 

  • Stobiecka M, Cieśla JM, Janowska B, Tudek B, Radecka H (2007) Piezoelectric sensor for determination of genetically modified soybean roundup ready (R) in samples not amplified by PCR. Sensors 7:1462–1479

    Article  CAS  PubMed Central  Google Scholar 

  • Tom-Moy M, Baer RL, Spira-Solomon D, Doherty TP (1995a) Atrazine measurements using surface transverse wave devices. Anal Chem 67:1510–1516

    Article  CAS  Google Scholar 

  • Tom-Moy M, Baer RL, Spira-Solomon D, Doherty TP (1995b) Atrazine measurements using surface transverse wave devices. Anal Chem 67:1510–1516

    Article  CAS  Google Scholar 

  • Vale C, Rosenbaum J, Horwitz S, Krishnaswamy S, Moore R (1990) FBAR filters at GHz frequencies. IEEE:332–336

    Google Scholar 

  • Voinova MV (2009) On mass loading and dissipation measured with acoustic wave sensors: a review. J Sensors

    Google Scholar 

  • Webb DJ (2002) Optical-fiber sensors: an overview. MRS Bull 27:365–369

    Article  Google Scholar 

  • Weber J, Albers WM, Tuppurainen J, Link M, Gabl R, Wersing W et al (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sensors Actuators A Phys 128:84–88

    Article  CAS  Google Scholar 

  • Wenzel SW, White RM (1988) A multisensor employing an ultrasonic Lamb-wave oscillator. IEEE Trans Electron Devices 35:735–743

    Article  Google Scholar 

  • Wessa T, Barié N, Rapp M, Ache HJ (1998) Polyimide, a new shielding layer for sensor applications. Sensors Actuators B Chem 53:63–68

    Article  CAS  Google Scholar 

  • White RM, Voltmer FW (1965a) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7:314–316

    Article  Google Scholar 

  • White RM, Voltmer FW (1965b) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7:314–316

    Article  Google Scholar 

  • White RM, Wicher PJ, Wenzel SW, Zellers ET (1987) Plate-mode ultrasonic oscillator sensors. IEEE Trans Ultrason Ferroelectr Freq Control 34:162–171

    Article  CAS  PubMed  Google Scholar 

  • Wingqvist G, Bjurström J, Liljeholm L, Yantchev V, Katardjiev I (2007) Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sensors Actuators B Chem 123:466–473

    Article  CAS  Google Scholar 

  • Zhou X, Liu L, Hu M, Wang L, Hu J (2002) Detection of hepatitis B virus by piezoelectric biosensor. J Pharm Biomed Anal 27:341–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, J., Wu, Q., Zhang, X., Wan, H., Wang, P. (2022). Acoustic Transducer and Its Applications in Biosensors. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-030-23217-7_65

Download citation

Publish with us

Policies and ethics