Skip to main content

New Materials for the Construction of Electrochemical Cell-Based Biosensors

  • Reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

The development of new biosensors with applications in various domains represents a contemporary challenge that it is extensively studied. The elaboration of cell-based biosensors has been a major outbreak in the sensing field due to their high sensitivity and specificity doubled by high stability and catalytic activity of the enzymatic systems included in the immobilized living cells. The major drawback of the conventional enzymatic biosensors represented by the loss of the enzymatic activity was eliminated by the immobilization of whole-cells on sensing platforms while maintaining their stability. The selection of the whole-cell, either mammalian or microorganism, orientates the detection towards heterogeneous compounds such as heavy metals, pollutants, foodborne pathogens, and biomedical biomarkers. By keeping the enzymes in a cellular environment, the enzymatic turnover was facilitated and their catalytic activity loss was greatly reduced. A key point is represented by the selection of suitable platforms that can ensure the stability of the cell and allow the monitoring of the metabolic transfer with the extracellular environment. Depending on the end-application, the cells could be coated with a protective polymeric layer or they can be immobilized in different biocompatible polymers. Moreover, adding carbon-based and/or metallic nanoparticles, their stability and catalytic properties are highly improved. The future trends in sensing strategies involve the association between different nanomaterials, miniaturization and the development of out-of the box sensing devices with improved analytical performances. The present chapter discusses multiple approaches for the elaboration of nanohybrid platforms, along with their advantages and limitations and it also underlines the materials used for designing wearable sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aslan S, Anik U (2016) Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta 183:73–81

    Article  CAS  Google Scholar 

  • Atta NF, Galal A, El-Ads EH (2015) Graphene -a platform for sensor and biosensor applications. In: Rinken T (ed) Biosensors – micro and nanoscale applications. InTechOpen, London

    Google Scholar 

  • Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371

    Article  CAS  PubMed  Google Scholar 

  • Bandodkar AJ, Nuñez-Flores R, Jia W et al (2015) All-printed stretchable electrochemical devices. Adv Mater 27:3060–3065

    Article  CAS  PubMed  Google Scholar 

  • Bandodkar AJ, Jeerapan I, Wang J (2016a) Wearable chemical sensors: present challenges and future prospects. ACS Sens 1:464–482

    Article  CAS  Google Scholar 

  • Bandodkar AJ, Jeerapan I, You JM et al (2016b) Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability. Nano Lett 16:721–727

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179–188

    Article  CAS  PubMed  Google Scholar 

  • Bayram E, Akyilmaz E (2016) Chemical development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sensors Actuators B Chem 233:409–418

    Article  CAS  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  PubMed  Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  PubMed  Google Scholar 

  • Castano LM, Flatau AB (2014) Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 23:053001

    Article  CAS  Google Scholar 

  • Cernat A, TertiÅŸ M, Fritea L et al (2016) Graphene in sensors design. In: Tiwari A, Syväjärvi M (eds) Advanced 2D materials. Wiley, New York, pp 387–431

    Chapter  Google Scholar 

  • Chee GJ (2016) A novel whole-cell biosensor for the determination of trichloroethylene. Sensors Actuators B Chem 237:836–840

    Article  CAS  Google Scholar 

  • Ciui B, TertiÅŸ M, Cernat A et al (2018) Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal Chem 90:7761–7768

    Article  CAS  PubMed  Google Scholar 

  • Ciui B, Tertis M, Feurdean CN et al (2019) Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral cavity. Sensors Actuators B Chem 281:399–407

    Article  CAS  Google Scholar 

  • Clayton J et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Google Scholar 

  • Dai B, Wang L, Wang Y et al (2018) Single-cell nanometric coating towards whole-cell-based biodevices and biosensors. Chemistry Select 3:7208–7221

    CAS  Google Scholar 

  • Deng L, Guo S, Zhou M et al (2010) A silk derived carbon fiber mat modified with au@Pt urchilike nanoparticles: a new platform as electrochemical microbial biosensor. Biosens Bioelectron 25:2189–2193

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Hao C, Xue Y et al (2007) A bio-inspired support of gold nanoparticles - chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules 8:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Fakhrullin RF, Zamaleeva AI, Minullina RT et al (2012) Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem Soc Rev 41:4189–4206

    Article  CAS  PubMed  Google Scholar 

  • Farooq U, Yang Q, Wajid M et al (2018) Biosensors and bioelectronics bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 118:204–216

    Article  CAS  PubMed  Google Scholar 

  • Freitas M, Nouws HPA, Delerue-matos C (2018) Electrochemical biosensing in cancer diagnostics and follow-up. Electronalysis 8:1584–1603

    Article  CAS  Google Scholar 

  • Gao G, Fang D, Yu Y et al (2017) A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 167:208–216

    Article  CAS  PubMed  Google Scholar 

  • Han L, Zhao Y, Cui S et al (2018) Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors. Appl Biochem Biotechnol 185:396–418

    Article  CAS  PubMed  Google Scholar 

  • Heikenfeld J, Jajack A, Rogers J et al (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hnaien M, Bourigua S, Bessueille F et al (2011) Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection. Electrochim Acta 56:10353–10358

    Article  CAS  Google Scholar 

  • Idil N, Hedström M, Denizli A et al (2017) Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens Bioelectron 87:807–815

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Liu Y, Jiang H et al (2018) A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens Bioelectron 102:396–402

    Article  CAS  PubMed  Google Scholar 

  • Kempaiah R, Chung A, Maheshwari V (2011a) Graphene as cellular interface: electromechanical coupling with cells. ACS Nano 5:6025–6031

    Article  CAS  PubMed  Google Scholar 

  • Kempaiah R, Salgado S, Chung WL et al (2011b) Graphene as membrane for encapsulation of yeast cells: protective and electrically conducting. Chem Commun 47:11480–11482

    Article  CAS  Google Scholar 

  • Khalil I, Julkapli NM, Yehye WA et al (2016) Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials (Basel) 9:406–444

    Article  CAS  Google Scholar 

  • Kim JI, Imani S et al (2016) Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sensors 1:1011–1019

    Article  CAS  Google Scholar 

  • Kim J, Kumar R, Bandodkar AJ et al (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3:1–15

    CAS  Google Scholar 

  • Kintzios S, Banerjee P (2015) Mammalian cell-based sensors for high throughput screening for detecting chemical residues, pathogens, and toxins in food. In: Bhunia AK, Kim MS, Taitt CR (eds) High throughput screening for food safety assessment. Woodhead Publishing, Amsterdam, pp 123–146

    Chapter  Google Scholar 

  • Kolahchi N, Braiek M, Ebrahimipour G et al (2018) Direct detection of phenol using a new bacterial strain-based conductometric biosensor. J Environ Chem Eng 6:478–484

    Article  CAS  Google Scholar 

  • Li L, Liang B, Shi J et al (2012) A selective and sensitive d-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode. Biosens Bioelectron 33:100–105

    Article  PubMed  CAS  Google Scholar 

  • Liang B et al (2013a) Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron 45:19–24

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Lang Q, Tang X et al (2013b) Simultaneously improving stability and specificity of cell surface displayed glucose dehydrogenase mutants to construct whole-cell biocatalyst for glucose biosensor application. Bioresour Technol 147:492–498

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Ma H, Sun H et al (2017a) Nanoporous gold-based microbial biosensor for direct determination of sulfide. Biosens Bioelectron 98:29–35

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Pharr M, Salvatore GA (2017b) Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11:9614–9635

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Tang T-C, Tham E et al (2017c) Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc Natl Acad Sci 114:2200–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Li Y, Zhang H et al (2018a) Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability. Appl Surf Sci 439:226–231

    Article  CAS  Google Scholar 

  • Liu X, Yuk H, Lin S et al (2018b) 3D printing of living responsive materials and devices. Adv Mater 30:1–9

    Google Scholar 

  • Liu Z, Zhang Y, Bian C et al (2019) Highly sensitive microbial biosensor based on recombinant Escherichia coli overexpressing catechol 2 , 3-dioxygenase for reliable detection of catechol. Biosens Bioelectron 126:51–58

    Article  CAS  PubMed  Google Scholar 

  • Majdinasab M, Hayat A, Marty JL (2018) Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC-Trends Anal Chem 107:60–77

    Article  CAS  Google Scholar 

  • Malekzad H, Zangabad PS, Mirshekari H et al (2016) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6:301–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mannoor M, Tao H, Clayton J et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Google Scholar 

  • Mattana G, Briand D (2016) Recent advances in printed sensors on foil. Mater Today 19:88–99

    Article  Google Scholar 

  • Mavrikou S, Flampouri E, Iconomou D et al (2017) Development of a cellular biosensor for the detection of aflatoxin B1, based on the interaction of membrane engineered Vero cells with anti-AFB1antibodies on the surface of gold nanoparticle screen printed electrodes. Food Control 73:64–70

    Article  CAS  Google Scholar 

  • Mishra RK, Hubble LJ, Martin A et al (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens 2:553–561

    Article  CAS  PubMed  Google Scholar 

  • Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  CAS  PubMed  Google Scholar 

  • Nguyen P, Berry V (2012) Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett 3:1024–1029

    Article  CAS  PubMed  Google Scholar 

  • Nyein HYY, Gao W, Shahpar Z et al (2016) A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10:7216–7224

    Article  CAS  PubMed  Google Scholar 

  • Patrick JF, Hart KR, Krull BP et al (2014) Continuous self-healing life cycle in vascularized structural composites. Adv Mater 26:4302–4308

    Article  CAS  PubMed  Google Scholar 

  • Qi P, Wan Y, Zhang D (2013) Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection. Biosens Bioelectron 39:282–288

    Article  CAS  PubMed  Google Scholar 

  • Rowley-Neale SJ, Randviir EP, Abo Dena AS et al (2018) An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl Mater Today 10:218–226

    Article  Google Scholar 

  • Sempionatto JR, Mishra RK, Martín A et al (2017) Wearable ring-based sensing platform for detecting chemical threats. ACS Sens 2:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Shao X, Jiang M, Yu Z et al (2009) Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microb Cell Factories 8:48–65

    Article  CAS  Google Scholar 

  • Son D, Bao Z (2018) Nanomaterials in skin-inspired electronics: toward soft and robust skin-like electronic nanosystems. ACS Nano 12:11731–11739

    Google Scholar 

  • Tee BCK, Wang C, Allen R et al (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lang Q, Li L et al (2013) Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application. Anal Chem 85:6107–6112

    Article  CAS  PubMed  Google Scholar 

  • Wang SQ, Chinnasamy T, Lifson MA et al (2016) Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol 34:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen G, Wen X, Shuang S et al (2014) Whole-cell biosensor for determination of methanol. Sensors Actuators B Chem 201:586–591

    Article  CAS  Google Scholar 

  • Wu X, Jiang H, Zhou Y et al (2010) Selective determination of drug resistant cancer cells on indium tin oxide electrode modified with nano titanium dioxide. Electrochem Commun 12:962–965

    Article  CAS  Google Scholar 

  • Wu X, Jiang H, Zheng J et al (2011) Highly sensitive recognition of cancer cells by electrochemical biosensor based on the interface of gold nanoparticles/polylactide nanocomposites. J Electroanal Chem 656:174–178

    Article  CAS  Google Scholar 

  • Xia H, Sakai K, Kitazumi Y et al (2018) Enzyme and microbial technology carbon-nanotube-caged microbial electrodes for bioelectrocatalysis. Enzym Microb Technol 117:41–44

    Article  CAS  Google Scholar 

  • Yang Y, Yang X, Yang Y et al (2018) Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 129:380–395

    Article  CAS  Google Scholar 

  • Ye Y, Guo H, Sun X (2018) Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 26:389–404

    Google Scholar 

  • Yildirim N, Demirkol DO, Timur S (2015) Modified gold surfaces with gold nanoparticles and 6-(ferrocenyl)hexanethiol: design of a mediated microbial sensor. Electroanalysis 27:52–57

    Article  CAS  Google Scholar 

  • Yu YY, Wang JX, Si RW et al (2017) Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor. Anal Chim Acta 985:148–154

    Article  CAS  PubMed  Google Scholar 

  • Zamaleeva AI, Sharipova IR, Shamagsumova RV et al (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal Methods 3:509–513

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhang Y, Zheng L et al (2013) Graphene oxide/poly-l-lysine assembled layer for adhesion and electrochemical impedance detection of leukemia K562 cancer cells. Biosens Bioelectron 42:112–118

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu J, Fan J et al (2018) Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal Chim Acta 1009:65–72

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wu G, Lu N et al (2017) A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. J Hazard Mater 324:272–280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI2017-0407 (INTELMAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Cristea .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cernat, A., Ciui, B., Fritea, L., Tertis, M., Cristea, C. (2022). New Materials for the Construction of Electrochemical Cell-Based Biosensors. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-030-23217-7_138

Download citation

Publish with us

Policies and ethics