Skip to main content

Neurosecretion: Hypothalamic Somata versus Neurohypophysial Terminals

  • Chapter
  • First Online:
Neurosecretion: Secretory Mechanisms

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 8))

  • 502 Accesses

Abstract

The magnocellular neurons (MCNs), with their somata situated in the supraoptic and paraventricular nuclei of the hypothalamus, and their nerve terminals in the posterior pituitary (neurohypophysis), are a classical example of a neuroendocrine system. This hypothalamic-neurohypophysial system (HNS) has proven to be an important model for understanding the organization of neuronal Ca2+ homeostasis and mechanisms of neurosecretion. The MCNs synthesize, in a cell-specific manner, two neurohormones: arginine vasopressin (AVP) and oxytocin (OT), which can be released, in a Ca2+-dependent manner, both at the neurohypophysial terminal and at the somatodendritic levels. The two types of MCNs have distinct types of electrical activity leading to specific secretory patterns. OT has positive and AVP MCNs have various feedback on their own release from dendrites, but not from their axon terminals.

Action potentials and the voltage-gated Ca2+ channels they open are the primary regulators of [Ca2+]i release in HNS terminals. Both HNS compartments utilize intracellular [Ca2+]i to regulate release of their peptides. However, whereas dendrites of OT neurons utilize inositol 1,4,5-trisphosphate (IP3) receptors, OT terminals utilize ryanodine receptors (RyRs) to regulate OT release. AVP release is not regulated in this way in either compartment. The somatodendritic AVP and OT release closely correlates with intracellular Ca2+ dynamics. More importantly, the Ca2+ stores in the endoplasmic reticulum (ER) play a major role in Ca2+ homeostasis in identified OT neurons. The Ca2+ homeostatic systems in the somata and dendrites differ from those active in the terminals; in the latter, it is mainly Ca2+ extrusion through the Ca2+ pump in the plasma membrane and uptake by mitochondria and neurosecretory granules (NSG) that are active. In both AVP and OT nerve terminals, no functional ER Ca2+ stores can be demonstrated experimentally. Instead, the NSG themselves store and release Ca2+. Nevertheless, trafficking of NSG appears to be the main mechanism for facilitation of peptide release in both compartments. Finally, SNARE-mediated exocytosis is different in HNS somata versus terminals. These fundamental differences in neurosecretion between somatodendrites and axon terminals highlight the importance of characterizing functional mechanisms in such compartments of neuroendocrine cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Augustine GJ, Adler EM, Charlton MP (1991) The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann N Y Acad Sci 635:365–381

    CAS  PubMed  Google Scholar 

  • Becherer U, Moser T, Stühmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6:846–853

    CAS  PubMed  Google Scholar 

  • Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40(5–6):405–412

    CAS  PubMed  Google Scholar 

  • Brethes D, Dayanithi G, Le Tellier L, Nordmann JJ (1987) Depolarization-induced Ca increase in isolated neurosecretory nerve terminals as measured with Fura-2. Proc Natl Acad Sci U S A 84:1439–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CH, Bourque CW (2006) Mechanisms of rhythmogenesis: insights from hypothalamic vasopressin neurons. Trends Neurosci 29(2):108–115

    CAS  PubMed  Google Scholar 

  • Cazalis M, Dayanithi G, Nordmann JJ (1985) The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J Physiol 369:45–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cazalis M, Dayanithi G, Nordmann JJ (1987) Hormone release from isolated nerve endings of the rat neurohypophysis. J Physiol 390:55–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevaleyre V, Dayanithi G, Moos F, Desarmenien MG (2000) Developmental regulation of a local positive autocontrol of supraoptic neurons. J Neurosci 20:5813–5819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow RH, Klingauf J, Heinemann C, Zucker RS, Neher E (1996) Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron 16:369–376

    CAS  PubMed  Google Scholar 

  • Coronado R, Morrissette J, Sukhareva M, Vaughan DM (1994) Structure and function of ryanodine receptors. Am J Phys 266(6 Pt 1):C1485–C1504

    CAS  Google Scholar 

  • Dayanithi G, Widmer H, Richard P (1996) Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J Physiol 490:713–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dayanithi G, Sabatier N, Widmer H (2000) Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp Physiol 85:75S–84S

    CAS  PubMed  Google Scholar 

  • Dayanithi G, Forostyak O, Ueta Y, Verkhratsky A, Toescu EC (2012) Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium 51:293–299

    CAS  PubMed  Google Scholar 

  • De Crescenzo V, ZhuGe R, Velázquez-Marrero C, Lifshitz LM, Custer E, Carmichael J, Lai FA, Tuft RA, Fogarty KE, Lemos JR, Walsh JV Jr (2004) Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. J Neurosci 24(5):1226–1235

    PubMed  PubMed Central  Google Scholar 

  • De Crescenzo V, Fogarty KE, Zhuge R, Tuft RA, Lifshitz LM, Carmichael J, Bellvé KD, Baker SP, Zissimopoulos S, Lai FA, Lemos JR, Walsh JV Jr (2006) Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals. J Neurosci 26(29):7565–7574

    PubMed  PubMed Central  Google Scholar 

  • Douglas WW, Poisner AM (1964a) Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J Physiol 172:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas WW, Poisner AM (1964b) Calcium movement in the rat and its relation to the release of vasopressin. J Physiol 172:19–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77(3):699–729. https://doi.org/10.1152/physrev.1997.77.3.699

    Article  CAS  PubMed  Google Scholar 

  • Galione A (1994) Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling. Mol Cell Endocrinol 98(2):125–131

    CAS  PubMed  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH (1996) Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84:473–480

    CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV (2006) NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 119:226–238

    CAS  PubMed  Google Scholar 

  • Giovannucci DR, Stuenkel EL (1997) Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings. J Physiol 498:735–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouzenes L, Sabatier N, Richard P, Moos FC, Dayanithi G (1999a) V1a- and V2-type vasopressin receptors mediate vasopressin-induced Ca2+ responses in isolated rat supraoptic neurones. J Physiol 517:771–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouzenes L, Dayanithi G, Richard P, Moos FC (1999b) Vasopressin (4-9) fragment activates V1a-type vasopressin receptor in rat supraoptic neurones. Neuroreport 10:1735–1739

    CAS  PubMed  Google Scholar 

  • Haigh JR, Parris R, Phillips JH (1989) Free concentrations of sodium, potassium and calcium in chromaffin granules. Biochem J 259:485–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Wang CT, Bai J, Chapman E, Jackson M (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292

    CAS  PubMed  Google Scholar 

  • Hatton GI, Li Z (1998) Mechanisms of neuroendocrine cell excitability. Adv Exp Med Biol 449:79–95

    CAS  PubMed  Google Scholar 

  • Heinemann C, von Rüden L, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflugers Arch 424(2):105–112

    CAS  PubMed  Google Scholar 

  • Higashida H, Yokiyama S, Huang J-J, Liue L, Ma W-J, Shirin A, Higashia C, Kikuch M, Minabe Y, Munesue T (2012) Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 61:828–838

    CAS  PubMed  Google Scholar 

  • Horrigan FT, Bookman RJ (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13:1119–1129

    CAS  PubMed  Google Scholar 

  • Hu C, Ahmed M, Melia T, Sollner T, Mayer T, Rothman JE (2003) Fusion of cells by flipped SNAREs. Science 300:1745–1749

    CAS  PubMed  Google Scholar 

  • Hutton JC (1984) Secretory granules. Experientia 40:1091–1098

    CAS  PubMed  Google Scholar 

  • Jahn R (2004) Principles of exocytosis and membrane fusion. Ann N Y Acad Sci 1014:170–178

    CAS  PubMed  Google Scholar 

  • Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45

    CAS  PubMed  Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Thomas, Springfield, IL

    Google Scholar 

  • Kits KS, Mansvelder HD (2000) Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. Brain Res Rev 33:78–94

    CAS  PubMed  Google Scholar 

  • Kortus S, Srinivasan C, Forostyak O, Ueta Y, Sykova E, Chvatal A, Zapotosky M, Verkhratsky A, Dayanithi G (2016a) Physiology of spontaneous [Ca2+]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium 59:280–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kortus S, Srinivasan C, Forostyak O, Zapotosky M, Ueta Y, Chvatal A, Sykova E, Verkhratsky A, Dayanithi G (2016b) Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous [Ca2+]i oscillations in magnocellular neurones of the rat supraoptic nucleus. Cell Calcium 59:289–298

    CAS  PubMed  Google Scholar 

  • Lambert RC, Dayanithi G, Moos FC, Richard P (1994) Isolated supraoptic cells respond to oxytocin by a rise in intracellular Ca concentration. J Physiol 478:275–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Aarhus R (1998) Fluorescent analogs of NAADP with calcium mobilizing activity. Biochim Biophys Acta 1425:263–271

    CAS  PubMed  Google Scholar 

  • Lee CJ, Dayanithi G, Nordmann JJ, Lemos JR (1992) Possible role in exocytosis for a Ca2+-activated channel in neurohypophysial granules. Neuron 8:335–342

    CAS  PubMed  Google Scholar 

  • Lemos JR (2012) Magnocellular neurons. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000176.pub2

    Chapter  Google Scholar 

  • Lemos JR, Sonia I, Ortiz-Miranda AE, Cuadra C, Velázquez-Marrero C, Custer EE, Dad T, Dayanithi G (2012) Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium 51:284–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemos JR, McNally J, Velazquez-Marrero C, Custer E, Salzberg BM, Woodbury D, Ortiz-Miranda S (2013) Role of intracellular calcium in release from nerve terminals. Biophys J 104(62):11a

    Google Scholar 

  • Lemos JR, Wang G, Marrero H, Knott T, Cuadra E, Ortiz-Miranda S (2015) Neurophysiology of neurohypophysial terminals. In: Armstrong WE, Tasker J (eds) Neurophysiology of neuroendocrine neurons. Wiley, Chichester, pp 163–185

    Google Scholar 

  • Leng G, Caquineau C, Ludwig M (2008) Priming in oxytocin cells and in gonadotrophs. Neurochem Res 33(4):668–677

    CAS  PubMed  Google Scholar 

  • Llano I, Gonzalez J, Caputo C, Lai FA, Blayney LM, Tan YP, Marty A (2000) Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci 3:1256–1265

    CAS  PubMed  Google Scholar 

  • Ludwig M, Bull PM, Tobin VA, Sabatier N, Landgraf R, Dayanithi G, Leng G (2005) Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurones. J Physiol 564(Pt 2):515–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136

    CAS  PubMed  Google Scholar 

  • Ludwig M, Sabatier N, Bull PM, Landgraf R, Dayanithi G, Leng G (2002) Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418:85–89

    CAS  PubMed  Google Scholar 

  • Ma J, Fill M, Knudson CM, Campbell KP, Coronado R (1988) Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242(4875):99–102

    CAS  PubMed  Google Scholar 

  • Marrero HG, Lemos JR (2003) Loose-patch clamp currents from the hypothalamo-neurohypophysial system of the rat. Pflugers Archiv 446(6):702–713

    CAS  PubMed  Google Scholar 

  • Marrero HG, Lemos JR (2005) Frequency-dependent potentiation of voltage-activated responses only in the intact neurohypophysis of rat. Pflugers Archiv 450:96–110

    CAS  PubMed  Google Scholar 

  • Marrero HG, Lemos JR (2007) “Loose-patch clamp method”. Neuromethods, vol. 38, Chapter 11. In: Walz W (ed) Patch-clamp analysis: advanced techniques, 2nd edn. Humana Press, Totowa, NJ, pp 325–352

    Google Scholar 

  • Marrero HG, Lemos JR (2010) Ionic conditions modulate stimulus-induced capacitance changes in isolated neurohypophysial terminals of the rat. J Physiol 588:287–300

    CAS  PubMed  Google Scholar 

  • McNally JM, Woodbury DJ, Lemos JR (2004) Syntaxin 1A drives fusion of large dense-core neurosecretory granules into a planar lipid bilayer. Cell Biochem Biophys 41:11–24

    CAS  PubMed  Google Scholar 

  • McNally JM, De Crescenzo V, Fogarty KE, Walsh JV Jr, Lemos JR (2009) Individual calcium syntillas do not trigger spontaneous exocytosis from nerve terminals of the neurohypophysis. J Neurosci 29:14120–14126

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNally JM, Custer E, Ortiz-Miranda S, Woodbury DJ, Kraner SD, Salzberg BM, Lemos JR (2014) Functional ryanodine receptors in the membranes of neurohypophysial secretory granules. J Gen Physiol 143:693–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier FA, Gutiérrez LM (2016) Captivating new roles of F-actin cortex in exocytosis and bulk endocytosis in neurosecretory cells. Trends Neurosci 39:605–613

    CAS  PubMed  Google Scholar 

  • Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K, Sakakibara A, Kitayama S, Kumagai K, Tanne K, Dohi T (2002) Pituitary adenylate cyclase-activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor-stimulated Ca(2+) entry, independent of store-operated Ca(2+) channels, and voltage-dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells. J Pharmacol Exp Ther 302:972–982

    CAS  PubMed  Google Scholar 

  • Mundorf ML, Troyer KP, Hochstetler SE, Near JA, Wightman RM (2000) Vesicular Ca2+ participates in the catalysis of exocytosis. J Biol Chem 275:9136–9142

    CAS  PubMed  Google Scholar 

  • Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals. J Gen Physiol 112:593–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narita K, Akita T, Hachisuka J, Huang S, Ochi K, Kuba K (2000) Functional coupling of Ca2+ channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. J Gen Physiol 115:519–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    CAS  Google Scholar 

  • Nicaise G, Maggio K, Thirion S, Horoyan M, Keicher E (1992) The calcium loading of secretory granules. A possible key event in stimulus-secretion coupling. Biol Cell 75:89–99

    CAS  PubMed  Google Scholar 

  • Nordmann JJ, Chevallier J (1980) The role of microvesicles in buffering [Ca2+]i in the neurohypophysis. Nature 287:54–56

    CAS  PubMed  Google Scholar 

  • Nordmann JJ, Dayanithi G, Lemos JR (1987) Isolated neurosecretory nerve endings as a tool for studying the mechanism of stimulus-secretion coupling. Biosci Rep 7:411–425

    CAS  PubMed  Google Scholar 

  • Orkand P, Palay S (1986) Chapter 12: 520. In: Fawcett DW, Bloom W (eds) A textbook of histology. Elsevier, Amsterdam

    Google Scholar 

  • Ortiz-Miranda S, McNally J, Custer E, Salzberg BM, Woodbury D, Lemos JR (2012) Functional ryanodine receptors in the membranes of Neurohypophysial secretory granules. Soc Neurosci Abs 36:446.24

    Google Scholar 

  • Parnas I, Parnas H (1986) Calcium is essential but insufficient for neurotransmitter release: the calcium-voltage hypothesis. J Physiol Paris 81:289–305

    CAS  PubMed  Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7:773–808

    CAS  PubMed  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74(3):595–636

    CAS  PubMed  Google Scholar 

  • Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298:781–785

    CAS  PubMed  Google Scholar 

  • Sasaki N, Dayanithi G, Shibuya I (2005) Ca clearance mechanisms in neurohypophysial terminals of the rat. Cell Calcium 37:45–56

    CAS  PubMed  Google Scholar 

  • Scheenen WJ, Wollheim CB, Pozzan T, Fasolato C (1998) Ca2+ depletion from granules inhibits exocytosis. A study with insulin-secreting cells. J Biol Chem 273:19002–19008

    CAS  PubMed  Google Scholar 

  • Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    CAS  PubMed  Google Scholar 

  • Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48:485–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sitsapesan R, McGarry SJ, Williams AJ, Sitsapesan R, McGarry SJ, Williams AJ (1995) Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci 16:386–391

    CAS  PubMed  Google Scholar 

  • Smith C, Moser T, Xu T, Neher E (1998) Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20:1243–1253

    CAS  PubMed  Google Scholar 

  • Sollner TH (2004) Intracellular and viral membrane fusion: a uniting mechanism. Curr Opin Cell Biol 16:429–435

    CAS  PubMed  Google Scholar 

  • Sorensen JB, Nagy G (2005) The neuronal SNARE complex: is it involved in vesicle priming or calcium-dependent fusion? Biophys J 88(1):174A

    Google Scholar 

  • Stopa EG, LeBlanc VK, Hill DH, Anthony EL (1993) A general overview of the anatomy of the neurohypophysis. Ann N Y Acad Sci 689:6–15

    CAS  PubMed  Google Scholar 

  • Stuenkel EL, Nordmann JJ (1993) Intracellular calcium and vasopressin release of rat isolated neurohypophysial nerve endings. J Physiol 468(1):335–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Ann Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Thirion S, Stuenkel EL, Nicaise G (1995) Calcium loading of secretory granules in stimulated neurohypophysial nerve endings. Neuroscience 64(1):125–137

    CAS  PubMed  Google Scholar 

  • Tobin VA, Hurst G, Norrie L, Dal Rio FP, Bull PM, Ludwig M (2004) Thapsigargin-induced mobilization of dendritic dense-cored vesicles in rat supraoptic neurons. Eur J Neurosci 19(10):2909–2912

    PubMed  Google Scholar 

  • Tobin VA, Douglas AJ, Leng G, Ludwig M (2011) The involvement of voltage-operated calcium channels in somatodendritic oxytocin release. PLoS One 6(10):e25366. https://doi.org/10.1371/journal.pone.0025366. Epub 2011 Oct 20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin V, Schwab Y, Lelos N, Onaka T, Pittman QJ, Ludwig M (2012) Expression of exocytosis proteins in rat supraoptic nucleus neurones. J Neuroendocrinol 24(4):629–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toescu EC, Dayanithi G (2012) Neuroendocrine signalling: natural variations on a Ca theme. Cell Calcium 51:207–211

    PubMed  Google Scholar 

  • Velázquez-Marrero C, Ortíz-Miranda S, Marrero HG, Custer E, Treistman SN, Lemos JR (2014) μ-Opioid signaling via ryanodine-sensitive Ca2+ stores in isolated terminals of the neurohypophysis. J Neurosci 34(10):3733–3742

    PubMed  PubMed Central  Google Scholar 

  • Velázquez-Marrero C, Custer E, Marrero H, Ortiz-Miranda S, Lemos JR (2020) Voltage-induced Ca2+ release by ryanodine receptors causes neuropeptide secretion from neurohypophysial terminals. J Neuroendocrinol. (in press)

    Google Scholar 

  • Viero C, Shibuya I, Kitamura N, Fujihara H, Verkhratsky A, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G (2010) Oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 16:e138–e156

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Rüden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Google Scholar 

  • Wang G, Dayanithi G, Kim S, Hom D, Nadasdi L, Kristipati R, Ramachandran J, Stuenkel EL, Nordmann JJ, Newcomb R, Lemos JR (1997) Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat. J Physiol 502:351–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Dayanithi G, Newcomb R, Lemos JR (1999) An R-type Ca(2+) current in neurohypophysial terminals preferentially regulates oxytocin secretion. J Neurosci 19:9235–9241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    CAS  PubMed  Google Scholar 

  • Woodbury DJ, McNally JM, Lemos JR (2006) SNARE-induced fusion of vesicles to a planar bilayer. In: Leitmannova-Liu A (ed) Advances in planar lipid bilayers and liposomes. Elsevier, London, pp 285–311

    Google Scholar 

  • Yin Y, Dayanithi G, Lemos JR (2002) Ca(2+)-regulated, neurosecretory granule channel involved in release from neurohypophysial terminals. J Physiol 539:409–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhou Z (2002) Ca(2+)-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat Neurosci 5:425–430

    CAS  PubMed  Google Scholar 

  • Zhang Y, Su Z, Zhang F, Chen Y, Shin K (2005) A partially zipped SNARE complex stabilized by the membrane. J Biol Chem 280(16):15595–15600

    CAS  PubMed  Google Scholar 

  • Zhang Z, Bhalla A, Dean C, Chapman ER, Jackson MB (2009) Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat Neurosci 12:163–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • ZhuGe R, DeCrescenzo V, Sorrentino V, Lai FA, Tuft RA, Lifshitz LM, Lemos JR, Smith C, Fogarty KE, Walsh JV Jr (2006) Syntillas release Ca2+ at a site different from the microdomain where exocytosis occurs in mouse chromaffin cells. Biophys J 90:2027–2037

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Lemos .

Editor information

Editors and Affiliations

2.1 Extra Supplementary Material

Movie 2.1

Spatiotemporal dynamics of Ca2+ response in an isolated AVP-eGFP neuron. The spatial distribution of [Ca2+]i is shown during a typical transient response induced by 50 mM K+. The video sequence is assembled from time lapse images of fluorescence intensity acquired video imaging of [Ca2+]i was performed using an Axio Observer D1 (Zeiss) inverted microscope equipped with filters for monitoring GFP fluorescence, and epifluorescence oil immersion objectives (Plan Neofluar 100 × 1.30, FLUAR 40×/1.3 oil and FLUOR 20 × 0.75, Zeiss). This allowed us to visualize and identity the SON neurons obtained from AVP-eGFP animals. The excitation light from a Xenon lamp passed through a Lambda D4 ultrafast wavelength switching system (Sutter Instruments) with a maximum switching frequency of 500 Hz. The fluorescence intensity was detected by using a cooled CCD camera (AxioCam MRm, Zeiss) and the whole system was controlled by Zeiss ZEN Imaging software (2012-SP2/AxioVision SE64 Rel. 4.8.3). The fluorescence intensity was measured with excitations at 340 and 380 nm, and emission at 510 nm. The color scale corresponds to the estimated local [Ca2+]i value. The elapsed time is shown at bottom left. The integrated [Ca2+]i value is given at bottom left and in the progressively drawn trace, with green bar indicating the time interval during which K+ was applied. Modified from Kortus et al. (2016a) with Courtesy of “Science Direct” (MP4 3411 kb)

Movie 2.2

Spatiotemporal dynamics of spontaneous Ca2+ oscillations in an isolated AVP-eGFP neuron. As described above, the spatial distribution of [Ca2+]i is shown during a spontaneous oscillation in normal condition. The video sequence is assembled from time lapse images of fluorescence intensity, acquired as described above. The color scale corresponds to the estimated local [Ca2+]i value. The elapsed time is shown at top left. The integrated [Ca2+]i value is given at top left and in the progressively drawn trace. Modified from Kortus et al. (2016a) with Courtesy of “Science Direct” (MP4 11701 kb)

Movie 2.3

Intracellular calcium sparks in NH terminals. Movie of murine HNS terminal patched in whole-cell configuration and loaded with Fluo-3 to visualize intracellular calcium. Calcium free bath solution, thus any calcium must come from internal stores. Note the number of calcium sparks or “syntillas” which appear spontaneously. Depolarizations, however, increase the number but not the size of such intraterminal calcium release events. (Courtesy of Dr. Valerie DeCrescenzo and Biomedical Imaging Group) (WMV 281 kb)

Movie 2.4

Movie Mechanisms for release facilitation in neurohypophysial terminals (NHT). Neurosecretory granule (NSG) and microvesicle (MV) exocytosis is known to be a Ca2+-dependent process. Release of a significant amount of Ca2+ precisely where exocytosis occurs could conceivably affect release (1). Alternatively, ryanodine-sensitive (RyR) Ca2+ stores could functionally modulate the size of vesicular release pools in NHT (2). The voltage dependence of syntillas, through their coupling to L-type Ca2+ channels (DHPR), would appear to make them ideal candidates to drive such a mechanism. Such a mechanism could serve as an activity-dependent means to recruit NSG from reserve pools in the cytosol, to the readily releasable pool (RRP) and immediately releasable pool (IRP) adjacent to the plasma membrane. (Courtesy of Dr. James McNally) (AVI 30345 kb)

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Cazalis et al. (1987) First demonstration of depolarization–secretion coupling (DSC) in isolated terminals from the hypothalamic-neurohypophysial system (HNS).

  • Chow et al. (1996) First demonstration of fusion pore opening before full secretion.

  • Dayanithi et al. (1996) First demonstration to show that in both AVP and OT neurons, all calcium channels are involved in high K+-induced [Ca2+]i responses but AVP-induced [Ca2+]i responses are mostly activated by L, N, P/Q, and R-type channels, whereas, OT-induced [Ca2+]i responses are exclusively from the release of Ca2+ from intracellular IP3/TG-sensitive Ca2+ stores.

  • Douglas and Poisner (1964) Review of calcium as the coupler in depolarization–secretion coupling (DSC).

  • Giovannucci and Stuenkel (1997) Demonstration that calcium regulates trafficking of granules between different secretory pools.

  • Gouzenes et al. (1999a, b) First demonstration that not only AVP-V1a receptors but also V2-type (classically restricted in peripheral system-PNS) AVP receptors regulate AVP-induced [Ca2+]i responses in the CNS (central nervous system) neurons. We assume that the AVP receptory sub-types expressed in the PNS and CNS might have different pharmacological profiles depending on the physiological status of the animal.

  • Jin et al. (2007) First demonstration that ryanodine receptors play critical role in oxytocin release.

  • Kortus et al. (2016a, b) This is the first detailed demonstration to clearly show the spontaneous [Ca2+]i oscillations in the isolated AVP and OT neurons from the transgenic rats for AVP-eGFP and OT-mRFP.

  • Ludwig et al. (2002) Demonstration that neuropeptide release from somatodendrites can be facilitated by intracellular calcium.

  • McNally et al. (2014) First demonstration that neurosecretory granules (NSG) can serve as functional calcium stores in nerve terminals.

  • Zhang and Zhou (2002) First demonstration of Ca2+-independent but voltage-dependent secretion (CIVDS) in neuronal cell bodies.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dayanithi, G., Lemos, J.R. (2020). Neurosecretion: Hypothalamic Somata versus Neurohypophysial Terminals. In: Lemos, J., Dayanithi, G. (eds) Neurosecretion: Secretory Mechanisms. Masterclass in Neuroendocrinology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-22989-4_2

Download citation

Publish with us

Policies and ethics