Skip to main content

Performances Study of Speed and Torque Control of an Asynchronous Machine by Oriented Stator Flux

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Smart Innovation, Ergonomics and Applied Human Factors (SEAHF) (SEAHF 2019)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 150))

  • 598 Accesses

Abstract

In this article, we proceeded to the study and analyzing of the speed and torque control performance of an asynchronous machine. This research presents in particular a new control scheme, whose principle is to control the operation of this machine similarly to a DC machine. Many control methods dealing this subject have been proposed in the publications and studies, the control by orientation of the rotor flux remains the most used given the high dynamic performance it offers for a wide range of applications. In this respect, our strategy of orienting the stator flux has shown by numerical simulation, the robustness of the proposed control against parametric variations as well as the working conditions. The results make it possible to illustrate, both in terms of performance and robustness, the contribution of such a control to impose on the machine dynamic behaviors similar to those of a control with oriented rotor flux. The objective of the regulators (PI) that we used is to regulate the stator flux and the speed as well as the torque.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a, b, c:

Indices of stator and rotor phases

s, r:

Indices relating to stator and rotor

d,q :

Indices of direct and quadrature orthogonal components

I rd ,I rq :

Rotor current of the axes d-q

V sd ,V sq :

Stator voltage of the axis d-q

V rd ,V rq :

Rotor voltage of the axis d-q

∅sd, ∅sq:

Stator flux of the axis d-q

∅s:

Amplitude of the stator flux

R s ,R r :

Stator and rotor resistances

L s :

Cyclic inductance of the stator

L r :

Cyclic inductance of the rotor

M :

Mutual cyclic inductance stator-rotor

T s :

Stator time constant (Ls/Rs)

T r :

Rotor time constant (Lr/Rr)

σ:

Leakage coefficient of the Blondel

w s , w r :

Pulsations of the stator and the rotor respectively

w m :

Mechanical pulsation

J :

Moment of inertia

F :

Coefficient of viscous friction

C em , C r :

Electromagnetic and load torques

[P],[P] -1 :

Park matrix, inverse matrix of Park

S :

Laplace operator

G :

Gain

IM:

Induction Machine

~:

Symbol indicating the compensation

^:

Symbol indicating the estimate

*:

Symbol Indicating the reference

(*):

Other notations and symbols are defined in the article

References

  1. Morand, F.: Techniques d’observation sans capteur de vitesse en vue de la commande des machines asynchrones. Thèse de doctorat École doctorale de Lyon, 07 janvier 2005

    Google Scholar 

  2. Baghli, L.: Contribution to induction machine control, using fuzzy logic, neural networks and genetic algorithms. Thèse de doctorat de University de Henri Poincare, France (2009)

    Google Scholar 

  3. Youbi, L., Craciunescu, A.: Commande directe du couple et commande vectorielle de la machine asynchrone. Rev. Roum. Sci. Techn, Électrotechn. et Énerg 2(53), 87–98 (2008)

    Google Scholar 

  4. Grellet, G., Clerc, G.: Actionneurs Electriques, Principe, Modèles. Commande. Collection Electrotechnique, Edition Eyrolles (1997)

    Google Scholar 

  5. Caron, J.P., Hautier, J.P.: Modélisation et commande de la machine asynchrone. Edition Technip, Paris (1995)

    MATH  Google Scholar 

  6. Poitiers, F.: Etude et Commande de Génératrices Asynchrones pour L’utilisation de l’énergie Éolienne, Thèse de Doctorat en Electronique et Génie Electrique. Ecole Polytechnique de l’Université de Nantes (2003)

    Google Scholar 

  7. Youbi, L.: A. craciunescu, Etude comparative entre la commande vectorielle à flux orienté et la commande directe du couple de la machine asynchrone, U.P.B. Sci. Bull, Series C 69(2) (2007)

    Google Scholar 

  8. Comnac, V.: Sensorless direct torque and stator flux control on induction machine using an extended KALMAN filter. In: Proceedings of IEEE International Conference on Control Application, pp. 674–679. Maxico (2001)

    Google Scholar 

  9. Jelassi, K.: Positionnement d’une Machine Asynchrone par la Méthode du flux Orienté. Thèse de Doctorat, INPT, Toulouse (1991)

    Google Scholar 

  10. Rivoir, M., Ferrier, J.L.: Asservissement, régulation, Commande analogique, Tome 2. Edition. Eyrolles, Paris (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benmbarek .

Editor information

Editors and Affiliations

Appendix

Appendix

  1. (1)

    The matrix representation of the model of the asynchronous machine established in the oriented rotor flux domain:

$$ \frac{{dX^{{\prime }} }}{d} = [A^{{^{{\prime }} }} ]X^{{^{{\prime }} }} + [B^{{^{{\prime }} }} ]U $$
(23)
$$ [A^{{\prime }} ] = \left[ {\begin{array}{*{20}l} { - \gamma^{{\prime }} } \hfill & {w_{s} } \hfill & {a_{1}^{{\prime }} } \hfill & {a_{2} w_{m} } \hfill \\ { - w_{s} } \hfill & { - \gamma^{{\prime }} } \hfill & { - a_{2} w_{m} } \hfill & {a_{1}^{{\prime }} } \hfill \\ {\frac{M}{{T_{r} }}} \hfill & 0 \hfill & { - \frac{1}{{T_{r} }}} \hfill & {w_{r} } \hfill \\ 0 \hfill & {\frac{M}{{T_{r} }}} \hfill & { - w_{r} } \hfill & { - \frac{1}{{T_{r} }}} \hfill \\ \end{array} } \right],\,X^{{\prime }} = \left[ {\begin{array}{*{20}l} {I_{sd} } \hfill \\ {I_{sq} } \hfill \\ {\emptyset_{rd} } \hfill \\ {\emptyset_{rq} } \hfill \\ \end{array} } \right][B^{{\prime }} ] = \left[ {\begin{array}{*{20}l} {a_{3}^{{\prime }} } \hfill & 0 \hfill & { - a_{2} } \hfill & 0 \hfill \\ 0 \hfill & {a_{3}^{{\prime }} } \hfill & 0 \hfill & { - a_{2} } \hfill \\ 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 1 \hfill \\ \end{array} } \right],\,U = \left[ {\begin{array}{*{20}l} {V_{sd} } \hfill \\ {V_{sq} } \hfill \\ {V_{rd} } \hfill \\ {V_{rq} } \hfill \\ \end{array} } \right] $$

With: \( \gamma^{{\prime }} = \left[ {\frac{1}{{T_{s} \sigma }} + \frac{(1 - \sigma }{{T_{r} \sigma }}} \right],a_{1}^{{\prime }} = \frac{1}{{T_{r} M}}\frac{(1 - \sigma )}{\sigma },a_{3}^{{\prime }} = \frac{1}{{\sigma l_{s} }} \)

  1. (2)

    The data of the asynchronous machine with two pole pairs: 4 kW, 220/380 V – 50 Hz, 15/8.6 A, 1440 tr/min, Cem = 25 Nm.

Parameters: Rs = 1.2 Ω, Rr = 1.8 Ω, Ls = 0.1554 H, Lr = 0.1568 H, M = 0.15 H, J = 0.07 kg m2, f = 0.0001 N.m.s/rd.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benmbarek, M., Benzergua, F., Chaker, A. (2019). Performances Study of Speed and Torque Control of an Asynchronous Machine by Oriented Stator Flux. In: Benavente-Peces, C., Slama, S., Zafar, B. (eds) Proceedings of the 1st International Conference on Smart Innovation, Ergonomics and Applied Human Factors (SEAHF). SEAHF 2019. Smart Innovation, Systems and Technologies, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-22964-1_8

Download citation

Publish with us

Policies and ethics