Skip to main content

Fluorescent Solar Energy Concentrators: Principle and Present State of Development

  • Chapter
  • First Online:
High-Efficient Low-Cost Photovoltaics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 140))

  • 1193 Accesses

Abstract

A review of the history and recent developments of fluorescent concentrators is given. The principle of this innovative device is based on light guiding in a transparent matrix doped with fluorescent centers, mainly organic dyes. The dyes strongly absorb a certain band of the solar spectrum and emit at a red-shifted frequency for which the concentrator is transparent. Since the light is emitted isotropically a large part is guided to the edges of the concentrator and arrives in concentrated form at the smaller side-edge. This concentrated light could be easily guided to an adapted solar cell. Work was done in the late seventies and early eighties, but then interest vanished because of several difficulties like unstable dyes and nonavailability of dyes in the infrared, which would be best adapted to silicon solar cells. Theoretically very high efficiencies can be reached if several plates with different colors are stacked and equipped with adapted solar cells. In recent years new interest has emerged in fluorescent concentrators. Two concepts are being most actively investigated now. The first is a band pass mirror on the front surface of the concentrator that reflects selectively the emitted light but transmits the light to be absorbed. In this manner also rays not within internal reflection are retained. It has been shown that only in this way the ultimate efficiency can be reached for a single plate concentrator. This efficiency is not much lower than for a directly illuminated ideal solar cell. A second new approach consists of replacing organic dyes with quantum dots. They offer the hope of greater stability, they can be tuned to different absorption wavelength by their size and by the spread of sizes their redshift can be tailored. A third approach is trying to put the dye centers in a surface coating, which opens the possibility to apply as a wafe guiding plates also more temperature resistive materials like glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.H. Weber, J. Lambe, Appl. Opt. 15, 2299 (1976)

    Article  ADS  Google Scholar 

  2. A. Goetzberger, W. Greubel, Solar energy conversion with fluorescent collectors. Appl. Phys. 12, 123 (1977)

    Article  ADS  Google Scholar 

  3. W.A. Shurcliff, R.C. Jones, J. Opt. Soc. Am. 39, 912 (1949)

    Article  ADS  Google Scholar 

  4. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergarnon Press, London, 1964)

    Google Scholar 

  5. G. Keil, J. Appl. Phys. 40, 3544 (1969)

    Article  ADS  Google Scholar 

  6. G. Keil, Nucl. Instrum. Methods 87, 111–123 (1970)

    Article  ADS  Google Scholar 

  7. G. Smestad, H. Riess, R. Winston, E. Yablonovitch, Solar Energy Mater. 21, 99 (1990)

    Article  Google Scholar 

  8. B.S. Richards, A. Shilav, R. Corkish, in 19. EU PV Solar Energy Conference (2004), p. 113

    Google Scholar 

  9. U. Rau, F. Einsele, G.C. Glaeser, Appl. Phys. Lett. 87, 171101 (2005)

    Article  ADS  Google Scholar 

  10. J.C. Goldschmidt, S.W. Glunz, A. Gombert, G. Willeke, in 21. EU PV Solar Energy Conference (2006), p. 107

    Google Scholar 

  11. G.C. Glaeser, U. Rau, Proc. SPIE 6197, 143 (2006)

    Google Scholar 

  12. A.A. Earp, G.B. Smith, P.D. Swift, J. Franklin, Sol. Energy 76, 655 (2004)

    Article  ADS  Google Scholar 

  13. A. Zastrow, H.R. Wilson, K. Heidler, V. Wittwer, A. Goetzberger, in 6th EU PV Conference (1983), p. 202

    Google Scholar 

  14. E. Yablonovitch, J. Opt. Soc. Am. 70, 1362 (1980)

    Article  ADS  Google Scholar 

  15. T. Markvart, J. Appl. Phys. 99, 026101 (2006)

    Article  ADS  Google Scholar 

  16. T. Markvart, L. Danos, P. Kittidachachan, R. Greef, in 20. EU PV Solar Energy Conference (2005), p. 171

    Google Scholar 

  17. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Google Scholar 

  18. A. Goetzberger, O. Schirmer, Appl. Phys. 19, 53 (1979)

    Article  ADS  Google Scholar 

  19. S. Balushev, T. Miteva, V. Yakutin, G. Nelles, A. Yasuda, G. Wegner, Appl. Phys. Lett. 14, 143903 (2006)

    Article  Google Scholar 

  20. V. Wittwer, W. Stahl, A. Goetzberger, Solar Energy Mater. 11, 187 (1984)

    Article  Google Scholar 

  21. A. Zastrow, SPIE 2255, 534 (1993)

    Google Scholar 

  22. L. Danos, P. Kittidachachan, P.J.J. Meyer, R. Greef, T. Markvart, in 21. EU PV Solar Energy Conference (2006), p. 443

    Google Scholar 

  23. A.J. Chatten, D.J. Farrell, B.F. Buxton, A. Büchtemann, K.W.J. Barnham, in 21. EU PV Solar Energy Conference (2006), p. 315

    Google Scholar 

  24. B.S. Richards, K.R. McIntosh, in 21. EU PV Solar Energy Conference (2006), p. 185

    Google Scholar 

  25. S.M. Reda, Sol. Energy 81, 755 (2007)

    Article  ADS  Google Scholar 

  26. K. Barnham, J.L. Marques, J. Hassard, P. O’Brien, Appl. Phys. Lett. 76, 1197 (2000)

    Article  ADS  Google Scholar 

  27. A. Schüler, Solar Energy (2007)

    Google Scholar 

  28. S.J. Gallagher, B. Norton, P.C. Eames, Sol. Energy 81, 813 (2007)

    Article  ADS  Google Scholar 

  29. S.J. Gallagher, B.C. Rowan, J. Doran, B. Norton, Sol. Energy 81, 540 (2007)

    Article  ADS  Google Scholar 

  30. A. Zastrow, V. Wittwer, Proc. SPIE 653, 93 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolf Goetzberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goetzberger, A. (2020). Fluorescent Solar Energy Concentrators: Principle and Present State of Development. In: Petrova-Koch, V., Hezel, R., Goetzberger, A. (eds) High-Efficient Low-Cost Photovoltaics. Springer Series in Optical Sciences, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-22864-4_12

Download citation

Publish with us

Policies and ethics