Skip to main content

The Prototype View of Concepts

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11499))

Included in the following conference series:

  • 742 Accesses

Abstract

Concepts are important and basic elements in human’s cognition process. The formal concept gives a mathematical format of the classical view of concepts in which all instances of a concept share common properties. But in some situation this view is not consistent with human’s understanding of concepts. The prototype view of concepts is more appropriate in our daily life. This view characters some analog categories as internally structured into a prototype (clearest cases, best examples of the category) and non-prototype members, with non-prototype members tending toward an order from better to poorer examples. The objective of this paper is to give a mathematical description of prototype view of concepts. Firstly, we give a similarity measurement of an object to another object in a formal context. Then based on this similarity measurement, the mathematical format of prototype view of concepts, named k-cutting concept, induced by one typical object is obtained. Finally, the properties of k-cutting concepts are studied. In addition to presenting theorems to summarize our results, we use some examples to illustrate the main ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal concept analysis. Knowl.-Based Syst. 19(5), 309–315 (2006)

    Article  Google Scholar 

  2. Chen, Y.H., Yao, Y.Y.: A multiview approach for intelligent data analysis based on data operators. Inf. Sci. 178(1), 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  3. Deogun, J.S., Saquer, J.: Monotone concepts for formal concept analysis. Discrete Appl. Math. 144(1), 70–78 (2004)

    Article  MathSciNet  Google Scholar 

  4. D\(\ddot{u}\)ntsch, I., Gediga, G.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162. IEEE Computer Society, Washington, D.C. (2002)

    Google Scholar 

  5. Formica, A.: Concept similarity in formal concept analysis: an information content approach. Knowl.-Based Syst. 21(1), 80–87 (2008)

    Article  MathSciNet  Google Scholar 

  6. Frixione, M., Lieto, A.: Representing concepts in formal ontologies: compositionality vs. typicality effects. Log. Log. Philos. 21, 391–414 (2012)

    MathSciNet  Google Scholar 

  7. Frixione, M., Lieto, A.: Towards an extended model of conceptual representations in formal ontologies: a typicality-based proposal. J. Univ. Comput. Sci. 20(3), 257–276 (2014)

    MATH  Google Scholar 

  8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  9. Hu, M., Yao, Y.: Definability in incomplete information tables. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 177–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_16

    Chapter  Google Scholar 

  10. Jiang, G.Q., Chute, C.G.: Auditing the semantic completeness of SNOMED CT using formal concept analysis. J. Am. Med. Inform. Assoc. 16(1), 89–102 (2009)

    Article  Google Scholar 

  11. Lakoff, G.: Hedges: a study in meaning criteria and the logic of fuzzy concepts. In: Hockney, D., Harper, W., Freed, B. (eds.) Contemporary Research in Philosophical Logic and Linguistic Semantics, vol. 4, pp. 221–27. Springer, Netherlands (1975). https://doi.org/10.1007/978-94-010-1756-5_9

    Chapter  Google Scholar 

  12. Li, W., Wei, L.: Data dimension reduction based on concept lattices in image mining. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems and Knowledge Discovery, vol. 5, pp. 369–373 (2009)

    Google Scholar 

  13. Ma, J.M., Zhang, W.X.: Axiomatic characterizations of dual concept lattices. Int. J. Approx. Reason. 54(5), 690–697 (2013)

    Article  MathSciNet  Google Scholar 

  14. Medin, D.L., Smith, E.E.: Concepts and concept formation. Ann. Rev. Psychol. 35(1), 113–138 (1984)

    Article  Google Scholar 

  15. Qi, J.J., Qian, T., Wei, L.: The connections between three-way and classical concept lattices. Knowl.-Based Syst. 91, 143–151 (2016)

    Article  Google Scholar 

  16. Qi, J., Wei, L., Yao, Y.: Three-way formal concept analysis. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 732–741. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_67

    Chapter  Google Scholar 

  17. Ren, R.S., Wei, L.: The attribute reductions of three-way concept lattices. Knowl.-Based Syst. 99, 92–102 (2016)

    Article  Google Scholar 

  18. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 448–453. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  19. Rosch, E.H.: On the internal structure of perceptual and semantic categories. In: Moore, T.E. (ed.) Cognitive Development and the Aquisition of Language, pp. 111–144. Academic Press, New York (1973)

    Chapter  Google Scholar 

  20. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  21. Vormbrock, B., Wille, R.: Semiconcept and protoconcept algebras: the basic theorems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 34–48. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_2

    Chapter  Google Scholar 

  22. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel Publishing Company, Dordrecht (1982)

    Chapter  Google Scholar 

  23. Wille, R.: Preconcept algebras and generalized double boolean algebras. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_1

    Chapter  Google Scholar 

  24. Wille, R.: Concept lattices and conceptual knowledge systems. Comput. Math. Appl. 23(6–9), 493–515 (1992)

    Article  Google Scholar 

  25. Xiao, Q.Z., Qin, K., Guan, Z.Q., Wu, T.: Image mining for robot vision based on concept analysis. In: IEEE International Conference on Robotics and Biomimetics (ROBIO 2007), pp. 207–212 (2007)

    Google Scholar 

  26. Yao, Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25929-9_6

    Chapter  Google Scholar 

  27. Yao, Y.Y.: Interpreting concept learning in cognitive informatics and granular computing. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(4), 855–866 (2009)

    Article  Google Scholar 

  28. Yao, Y.Y.: Rough-set concept analysis: interpreting RS-definable concepts based on ideas from formal concept analysis. Inf. Sci. 346, 442–462 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support of the Natural Science Foundation of China (No.61772021 and No.11371014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, R., Wei, L. (2019). The Prototype View of Concepts. In: Mihálydeák, T., et al. Rough Sets. IJCRS 2019. Lecture Notes in Computer Science(), vol 11499. Springer, Cham. https://doi.org/10.1007/978-3-030-22815-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22815-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22814-9

  • Online ISBN: 978-3-030-22815-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics