Skip to main content

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

Greenhouses are intensive cropping systems where microclimatic conditions are particularly favourable for the development of different fungal diseases (fungal-like organisms and true fungi) and if no proper control measures are taken in time, losses may be high. The principal fungal diseases are presented, as well as examples of emerging or re-emerging diseases, which may represent, in the future, a major threat to greenhouse production in some areas. Examples of fungal diseases are given based on their specificity towards target plant organs (aerial organs, vascular system, roots/collar).

This chapter provides information relevant to the diagnosis, biology of the main fungal plant pathogens and the epidemiology of the diseases encountered in such greenhouse cropping systems. Basic information on plant protection methods is also provided: control strategies of fungal diseases still rely on the use of chemicals but transition to integrated pest management (IPM) is in progress in many countries worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Lazarovits G (2006) Seed treatment with phosphonate (AG3) suppresses Pythiumdamping-off of cucumber seedlings. Plant Dis 90(4):459–464. https://doi.org/10.1094/pd-90-0459

  • Abdel-Kader MM, El-Mougy NS, Shaheen AM, Rizk FA (2017) Integrated control against root rot and wilt diseases of cantaloupe under plastic houses conditions. Res J Pharm Biol Chem Sci 8(1):622–627

    Google Scholar 

  • Adjebli A, Leyronas C, Aissat K, Nicot PC (2015) Comparison of Botrytis cinereapopulations collected from tomato greenhouses in Northern Algeria. J Phytopathol 163(2):124–132. https://doi.org/10.1111/jph.12289

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Oxford

    Google Scholar 

  • Aissat K, Nicot PC, Guechi A, Bardin M, Chibane M (2008) Grey mould development in greenhouse tomatoes under drip and furrow irrigation. Agron Sustain Dev 28(3):403–409. https://doi.org/10.1051/agro:2008016

    Article  Google Scholar 

  • Ajouz S, Nicot PC, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59(3):556–566. https://doi.org/10.1111/j.1365-3059.2009.02230.x

  • Alaei H, De Backer M, Nuytinck J, Maes M, Hofte M, Heungens K (2009) Phylogenetic relationships of Puccinia horianaand other rust pathogens of Chrysanthemum x morifolium based on rDNA ITS sequence analysis. Mycol Res 113:668–683. https://doi.org/10.1016/j.mycres.2009.02.003

  • Albert R, Kunstler A, Lantos F, Adam AL, Kiraly L (2017) Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiol Plant 39(2). https://doi.org/10.1007/s11738-017-2353-5

  • Al-Mawaali Q, Al-Sadi AM, Khan AJ, Al-Hasani HD, Deadman ML (2012) Response of cucurbit rootstocks to Pythium aphanidermatum. Crop Prot 42:64–68. https://doi.org/10.1016/j.cropro.2012.07.017

    Article  Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Kaabi SM, Al-Quraini SM, Al-Mazroui SS, Al-Mahmooli IH, Deadman ML (2011a) Occurrence, characterization and management of fruit rot of immature cucumbers under greenhouse conditions in Oman. Phytopathol Mediterr 50(3):421–429

    Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Kiyumi KS, Al-Mahrouqi S, Al-Mahmooli H, Deadman ML (2011b) Etiology and characterization of cucumber vine decline in Oman. Crop Prot 30(2):192–197. https://doi.org/10.1016/j.cropro.2010.10.013

    Article  Google Scholar 

  • Al-Sadi AM, Al-Ghaithi AG, Al-Balushi ZM, Al-Jabri AH (2012) Analysis of diversity in Pythium aphanidermatum populations from a single greenhouse reveals phenotypic and genotypic changes over 2006 to 2011. Plant Dis 96(6):852–858. https://doi.org/10.1094/pdis-07-11-0624

    Article  CAS  PubMed  Google Scholar 

  • Al-Sa’di AM, Drenth A, Deadman ML, Al-Said FA, Khan I, Aitken EAB (2008) Potential sources of Pythium inoculum into greenhouse soils with no previous history of cultivation. J Phytopathol 156(7–8):502–505. https://doi.org/10.1111/j.1439-0434.2008.01396.x

  • Amein T, Wright SAI, Wikstrom M, Koch E, Schmitt A, Stephan D, Jahn M, Tinivella F, Gullino ML, Forsberg G, Werner S, van der Wolf J, Groot SPC (2011) Evaluation of non-chemical seed treatment methods for control of Alternaria brassicicola on cabbage seeds. J Plant Dis Protect 118:214–221

    Google Scholar 

  • Aragona M, Minio A, Ferrarini A, Valente MT, Bagnaresi P, Orru L, Tononi P, Zamperin G, Infantino A, Vale G, Cattivelli L, Delledonne M (2014) De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici. BMC Genomics 15:313. https://doi.org/10.1186/1471-2164-15-313

  • Armstrong GM, Armstrong JK (1948) Nonsusceptible hosts as carriers of wilt Fusaria. Phytopathology 38:808–821

    Google Scholar 

  • Atallah ZK, Bae J, Jannsky SH, Rouse DL, Stevenson WR (2007) Multiplex real-time quantitative PCR methodology to assist in the breeding of potato lines with resistance to Verticillumwilt. Phytopathology 97:865–872

    Google Scholar 

  • Augustin B, Graf V, Laun N (2002) Temperature influencing efficiency of grafted tomato cultivars against root-knot nematode (Meloidogyne arenaria) and corky root (Pyrenochaeta lycopersici). Z Pflanzenkrankh Pflanzenschutz 109(4):371–383

    Google Scholar 

  • Bardin M, Nicot PC, Normand P, Lemaire JM (1997) Virulence variation and DNA polymorphism in Sphaerotheca fuliginea, causal agent of powdery mildew of cucurbits. Eur J Plant Pathol 103(6):545–554

    Article  CAS  Google Scholar 

  • Bardin M, Carlier J, Nicot PC (1999) Genetic differentiation in the French population of Erysiphe cichoracearum, a causal agent of powdery mildew of cucurbits. Plant Pathol 48(4):531–540

    Article  Google Scholar 

  • Bardin M, Decognet V, Nicot PC (2014) Remarkable predominance of a small number of genotypes in greenhouse populations of Botrytis cinerea. Phytopathology 104(8):859–864. https://doi.org/10.1094/phyto-10-13-0271-r

  • Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, Nicot PC (2015) Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci 6:566. https://doi.org/10.3389/fpls.2015.00566

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardin M, Leyronas C, Troulet C, Morris CE (2018) Striking similarities between Botrytis cinerea from non-agricultural and from agricultural habitats. Front Plant Sci 9

    Google Scholar 

  • Barriere V, Lecompte F, Nicot PC, Maisonneuve B, Tchamitchian M, Lescourret F (2014) Lettuce cropping with less pesticides. A review. Agron Sustain Dev 34(1):175–198. https://doi.org/10.1007/s13593-013-0158-5

    Article  CAS  Google Scholar 

  • Bayraktar H, Oksal E (2011) Molecular, physiological and pathogenic variability of Pyrenochaeta lycopersici associated with corky rot disease of tomato plants in Turkey. Phytoparasitica 39(2):165–174. https://doi.org/10.1007/s12600-011-0150-z

  • Bélanger RR, Labbé C (2002) Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS press, St. Paul, pp 256–267

    Google Scholar 

  • Belbahri I, Calmin G, Pawlowski J, Lefort F (2005) Phylogenetic analysis and real time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycol Res 109:1276–1287

    Google Scholar 

  • Belisario A, Forti E, Corazza L (1999) First report of Myrothecium verrucaria from muskmelon seeds. Plant Dis 83:589

    Google Scholar 

  • Bellon-Gomez D, Vela-Corcia D, Perez-Garcia A, Tores JA (2015) Sensitivity of Podosphaera xanthiipopulations to anti-powdery-mildew fungicides in Spain. Pest Manag Sci 71(10):1407–1413. https://doi.org/10.1002/ps.3943

  • Ben-Naim Y, Falach L, Cohen Y (2015) Resistance against basil downy mildew in Ocimum species. Phytopathology 105:778–785

    Article  CAS  PubMed  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctoniaroot-rot of tomato by Glomus mossaeBEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111(3):279–288. https://doi.org/10.1007/s10658-004-4585-7

  • Bharath BG, Lokesh S, Raghavendru VB, Prakah HS, Shetty BG (2006) First report of the occurrence of Myrothecium verrucaria in watermelon seeds from India. Aust Plant Dis Notes 1:3–4

    Article  Google Scholar 

  • Bhat RG, Subbarao KV (1999) Host range specificity in Verticillium dahliae. Phytopathology 89:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Blancard D, Lecoq H, Pitrat M (1991) Maladies des cucurbitacées; Observer, identifier, lutter. Editions Quae, Paris

    Google Scholar 

  • Blancard D, Lot H, Maisonneuve B (2003) Maladies des salades. Identifier, connaître et maîtriser. Editions Quae, Paris

    Google Scholar 

  • Blancard D, Laterrot H, Marchoux G, Candresse T (2009) Les maladies de la tomate. Identifier, connaître, maîtriser. Editions Quae, Paris

    Google Scholar 

  • Boff P, Kastelein P, de Kraker J, Gerlagh M, Kohl J (2001) Epidemiology of grey mould in annual waiting-bed production of strawberry. Eur J Plant Pathol 107(6):615–624. https://doi.org/10.1023/a:1017932927503

    Article  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16(2):93–108

    Google Scholar 

  • Bolton AT (1984) Reduction in yield of greenhouse carnation caused by Pythium aphanidermatum and Rhizoctonia solani. Can J Plant Pathol 6(4):321–324

    Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1–16. https://doi.org/10.1111/j.1364-3703.2005.00316.x

    Article  CAS  PubMed  Google Scholar 

  • Bonde MR, Murphy CA, Bauchan GR, Luster DG, Palmer CL, Nester SE, Revell JM, Berner DK (2015) Evidence for systemic infection by Puccinia horiana, causal agent of chrysanthemum white rust, in chrysanthemum. Phytopathology 105(1):91–98. https://doi.org/10.1094/phyto-09-13-0266-r

  • Booth C (1984) The Fusarium problem: historical, economic, and taxonomic aspects. In: Moss MO, Smith JE (eds) The applied mycology of Fusarium. Cambridge University Press, Cambridge, pp 1–13

    Google Scholar 

  • Brewer MT, Rath M, Li HX (2015) Genetic diversity and population structure of cucurbit gummy stem blight fungi based on microsatellite markers. Phytopathology 105(6):815–824. https://doi.org/10.1094/phyto-10-14-0282-r

    Article  PubMed  Google Scholar 

  • Brown S, Koike ST, Ochoa OE, Laemmlen F, Michelmore RW (2004) Insensitivity to the fungicide fosetyl-aluminum in California isolates of the lettuce downy mildew pathogen, Bremia lactucae. Plant Dis 88(5):502–508. https://doi.org/10.1094/pdis.2004.88.5.502

  • Bubici G, Amenduni M, Colella C, D’Amico M, Cirulli M (2006) Efficacy of acibenzolar-S-methyl and two strobilurins, azoxystrobin and trifloxystrobin, for the control of corky root of tomato and Verticilliumwilt of eggplant. Crop Prot 25(8):814–820. https://doi.org/10.1016/j.cropro.2005.06.008

  • Bubici G, Marsico AD, D’Amico M, Amenduni M, Cirulli M (2013) Evaluation of Streptomycesspp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl Soil Ecol 72:128–134. https://doi.org/10.1016/j.apsoil.2013.07.001

  • Butt DJ (1978) Epidemiology of powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 51–81

    Google Scholar 

  • Cai XZ, Zhou X, Xu YP, Joosten M, de Wit P (2007) Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants. Plant Mol Biol 64(1–2):89–101. https://doi.org/10.1007/s11103-007-9136-0

  • Campbell CL (1985) Wilts. In: Strider DL (ed) Diseases of floral crops, vol 1. Praeger Publishers, New York, pp 141–151

    Google Scholar 

  • de Cara M, Heras F, Santos M, Marquina JCT (2008) First report of Fulvia fulva, causal agent of tomato leaf mold, in greenhouses in southeastern Spain. Plant Dis 92(9):1371–1371. https://doi.org/10.1094/pdis-92-9-1371b

  • Cardinale F, Ferraris L, Valentino D, Tamietti G (2006) Induction of systemic resistance by a hypovirulent Rhizoctonia solaniisolate in tomato. Physiol Mol Plant Pathol 69(4–6):160–171. https://doi.org/10.1016/j.pmpp.2007.04.002

  • Carisse O (2016) Epidemiology and aerobiology of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 127–148. https://doi.org/10.1007/978-3-319-23371-0_9

  • Carisse O, Morissette-Thomas V, Van der Heyden H (2013) Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry. Phytopathology 103(8):811–821. https://doi.org/10.1094/phyto-11-12-0300-r

    Article  CAS  PubMed  Google Scholar 

  • Caron J, Laverdiere L, Thibodeau PO, Belanger RR (2002) Use of an indigenous strain of Trichoderma harzianumagainst five plant pathogens on greenhouse cucumber and tomato in Quebec. Phytoprotection 83(2):73–87

    Google Scholar 

  • Cerkauskas RF, Ferguson G, Banik M (2011) Powdery mildew (Leveillula taurica) on greenhouse and field peppers in Ontario – host range, cultivar response and disease management strategies. Can J Plant Pathol 33(4):485–498. https://doi.org/10.1080/07060661.2011.619828

  • Chapin LJG, Wang Y, Lutton E, Gardener BBM (2006) Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions on tomatoes grown in Ohio. Plant Dis 90(4):397–403. https://doi.org/10.1094/pd-90-0397

    Article  PubMed  Google Scholar 

  • Chen C, Wang YM, Su C, Zhao XQ, Li M, Meng XW, Jin Y, Yang SH, Ma YS, Wei DZ, Suh JW (2015) Antifungal activity of Streptomyces albidoflavus L131 against the leaf mold pathogen Passalora fulvainvolves membrane leakage and oxidative damage. J Korean Soc Appl Biol Chem 58(1):111–119. https://doi.org/10.1007/s13765-015-0012-3

  • Chitrampalam P, Pryor BM (2013) Population density and spatial pattern of sclerotia of Sclerotinia sclerotiorumin desert lettuce production fields. Can J Plant Pathol 35(4):494–502. https://doi.org/10.1080/07060661.2013.841758

  • Chohan S, Perveen R, Mehmood MA, Naz S, Akram N (2015) Morpho-physiological studies, management and screening of tomato germplasm against Alternaria solani, the causal agent of tomato early blight. Int J Agric Biol 17(1):111–118

    Google Scholar 

  • Clergeot PH, Schuler H, Mortz E, Brus M, Vintila S, Ekengren S (2012) The corky root rot pathogen Pyrenochaeta lycopersicisecretes a proteinaceous inducer of cell death affecting host plants differentially. Phytopathology 102(9):878–891. https://doi.org/10.1094/phyto-01-12-0004

  • Cobelli L, Collina M, Brunelli A (1998) Occurrence in Italy and characteristics of lettuce downy mildew (Bremia lactucae) resistant to phenylamide fungicides. Eur J Plant Pathol 104(5):449–455. https://doi.org/10.1023/a:1008696021621

  • Cohen Y, Vaknin M, Ben-Naim Y, Rubin AE (2013) Light suppresses sporulation and epidemics of Peronospora belbahrii. PLoS One 8:e81282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook RTA (2001) First report in England of changes in the susceptibility of Puccinia horiana, the cause of chrysanthemum white rust, to triazole and strobilurin fungicides. Plant Pathol 50(6):792–792. https://doi.org/10.1046/j.1365-3059.2001.00615.x

  • Correll JC, Gordon TR, Elliott VJ (1987) Host range, specificity, and biometrical measurements of Leveillula taurica in California. Plant Dis 71(3):248–251. https://doi.org/10.1094/pd-71-0248

  • Cuadrado A, Gallego E, Sanchez J, Gomez V (2000) Identification of greenhouse characteristics which affect the incidence of Sclerotinia sclerotiorum(Lib.) de bary in pepper crops in a Mediterranean climate. Eur J Plant Pathol 106(2):117–122. https://doi.org/10.1023/a:1008789426172

  • Curtis MD, Gore J, Oliver RP (1994) The phylogeny of the tomato leaf mold fungus Cladosporium fulvum syn Fulvia fulvaby analysis of rDNA sequences. Curr Genet 25(4):318–322. https://doi.org/10.1007/bf00351484

  • Damirdagh IS (1981) Control of Cladosporiumrot of stored cucumber by benlate. Phytopathology 71(2):212–212

    Google Scholar 

  • De Backer M, Alaei H, Van Bockstaele E, Roldan-Ruiz I, van der Lee T, Maes M, Heungens K (2011) Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. Eur J Plant Pathol 130(3):325–338. https://doi.org/10.1007/s10658-011-9756-8

  • De Corato U, Viola E, Arcieri G, Valerio V, Zimbardi F (2016) Use of composted agro-energy co-products and agricultural residues against soil-borne pathogens in horticultural soil-less systems. Sci Horticult 210:166–179. https://doi.org/10.1016/j.scienta.2016.07.027

  • De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsiion tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29(7):663–670. https://doi.org/10.1016/j.cropro.2010.01.012

  • De Miccolis Angelini RM, Pollastro S, Faretra F (2016) Genetics of Botrytis cinerea. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 35–53. https://doi.org/10.1007/978-3-319-23371-0_9

  • Deadman M, Al Hasani H, Al Sa’di A (2006) Solarization and biofumigation reduce Pythium aphanidermatum induced damping-off and enhance vegetative growth of greenhouse cucumber in Oman. J Plant Pathol 88(3):335–337

    Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Debener T, Byrne DH (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117. https://doi.org/10.1016/j.plantsci.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  • Decognet V, Bardin M, Trottin-Caudal Y, Nicot PC (2009) Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse. Phytopathology 99(2):185–193. https://doi.org/10.1094/phyto-99-2-0185

  • Decognet V, Ravetti F, Martin C, Nicot PC (2010) Improved leaf pruning reduces development of stem cankers caused by grey mould in greenhouse tomatoes. Agron Sustain Dev 30(2):465–472. https://doi.org/10.1051/agro/2009030

    Article  Google Scholar 

  • Deniel F, Renault D, Tirilly Y, Barbier G, Rey P (2006) A dynamic biofilter to remove pathogens during tomato soilless culture. Agron Sustain Dev 26(3):185–193. https://doi.org/10.1051/agro:2006015

    Article  Google Scholar 

  • Dheepa R, Renukadevi P, Kumar SV, Nakkeeran S (2015) First report of chrysanthemum white rust (Puccinia horiana) in India. Plant Dis 99(9):1279–1280. https://doi.org/10.1094/pdis-03-15-0241-pdn

  • Dheepa R, Vinodkumar S, Renukadevi P, Nakkeeran S (2016) Phenotypic and molecular characterization of chrysanthemum white rust pathogen Puccinia horiana(Henn) and the effect of liquid based formulation of Bacillus spp. for the management of chrysanthemum white rust under protected cultivation. Biol Control 103:172–186. https://doi.org/10.1016/j.biocontrol.2016.09.006

  • Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325

    Article  PubMed  Google Scholar 

  • Di YL, Zhu ZQ, Lu XM, Zhu FX (2016) Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum. Crop Prot 87:31–36. https://doi.org/10.1016/j.cropro.2016.04.020

  • Diaz-Hernandez S, Gallo-Llobet L, Dominguez-Correa P, Rodriguez A (2017) Effect of repeated cycles of soil solarization and biosolarization on corky root, weeds and fruit yield in greenhouse tomatoes under subtropical climate conditions in the Canary Islands. Crop Prot 94:20–27. https://doi.org/10.1016/j.cropro.2016.12.010

  • Dik AJ, Wubben JP (2004) Epidemiology of Botrytis cinerea diseases in greenhouses. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 319–333

    Google Scholar 

  • Djalali Farahani-Kofoet DR, Römer P, Grosch R (2012) Systemic spread of downy mildew in basil plants and detection of the pathogen in seed and plant samples. Mycol Prog 11:961–966

    Article  Google Scholar 

  • Doganlar S, Dodson J, Gabor B, Beck-Bunn T, Crossman C, Tanksley SD (1998) Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor Appl Genet 97(5–6):784–788. https://doi.org/10.1007/s001220050956

  • Ehret DL, Menzies JG, Bogdanoff C, Utkhede RS, Frey B (2002) Foliar applications of fertilizer salts inhibit powdery mildew on tomato. Can J Plant Pathol Rev Can Phytopathol 24(4):437–444

    Article  CAS  Google Scholar 

  • Elad Y (1997) Effect of filtration of solar light on the production of conidia by field isolates of Botrytis cinerea and on several diseases of greenhouse-grown vegetables. Crop Prot 16(7):635–642. https://doi.org/10.1016/s0261-2194(97)00046-x

  • Elad Y (2000) Trichoderma harzianumT39 preparation for biocontrol of plant diseases – control of Botrytis cinerea, Sclerotinia sclerotiorumand Cladosporium fulvum. Biocontrol Sci Tech 10(4):499–507

    Google Scholar 

  • Elad Y (2016) Cultural and integrated control of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 149–164. https://doi.org/10.1007/978-3-319-23371-0_8

  • Elad Y, Hadar Y, Hadar E, Chet I, Henis Y (1981) Biological-control of Rhizoctonia solani by Trichoderma harzianumin carnation. Plant Dis 65(8):675–677

    Google Scholar 

  • Elad Y, Rav-David D, Leibman D, Vintal H, Vunsh R, Moorthy H, Gal-On A, Loebenstein G (2012) Tomato plants transformed with the inhibitor-of-virus-replication gene are partially resistant to several pathogenic fungi. Ann Appl Biol 161(1):16–23. https://doi.org/10.1111/j.1744-7348.2012.00547.x

  • Elad Y, Pertot I, Cotes Prado AM, Stewart A (2016) Plant hosts of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 413–486. https://doi.org/10.1007/978-3-319-23371-0_9

  • Enya J, Ikeda K, Takeuchi T, Horikoshi N, Higashi T, Sakai T, Iida Y, Nishi K, Kubota M (2009) The first occurrence of leaf mold of tomato caused by races 4.9 and 4.9.11 of Passalora fulva (syn. Fulvia fulva) in Japan. J Gen Plant Pathol 75(1):76–79. https://doi.org/10.1007/s10327-008-0134-0

  • Fallik E, Ziv O, Grinberg S, Alkalai S, Klein JD (1997) Bicarbonate solutions control powdery mildew (Leveillula taurica) on sweet red pepper and reduce the development of postharvest fruit rotting. Phytoparasitica 25(1):41–43. https://doi.org/10.1007/bf02981478

  • Farr DF, Rossman AY (2017) Fungal databases. U.S. National Fungus Collections, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases. Accessed 20 Apr 2017

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6. https://doi.org/10.1016/j.femsle.2005.06.034

  • Felix-Gastelum R, Herrera-Rodriguez G, Martinez-Valenzuela C, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Brito-Vega H, Espinosa-Matias S (2014) First report of powdery mildew (Podosphaera pannosa) of roses in Sinaloa, Mexico. Plant Dis 98(10):1442–1443. https://doi.org/10.1094/pdis-06-14-0605-pdn

  • Fillinger S, Walker AS (2016) Chemical control and resistance management of Botrytis diseases. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 189–216. https://doi.org/10.1007/978-3-319-23371-0_9

  • Fillinger S, Ajouz S, Nicot PC, Leroux P, Bardin M (2012) Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. Plos One 7(8):e42520. https://doi.org/10.1371/journal.pone.0042520

  • Fiume F, Fiume G (2003) Use of culture filtrates of Pyrenochaeta lycopersiciin tests for selecting tolerant varieties of tomato. J Plant Pathol 85(2):131–133

    Google Scholar 

  • Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27(2):75–107. https://doi.org/10.1080/07352680802147353

    Article  CAS  Google Scholar 

  • Gadoury DM, Asalf B, Heidenreich MC, Herrero ML, Welser MJ, Seem RC, Tronsmo AM, Stensvand A (2010) Initiation, development, and survival of cleistothecia of Podosphaera aphanisand their role in the epidemiology of strawberry powdery mildew. Phytopathology 100(3):246–251. https://doi.org/10.1094/phyto-100-3-0246

  • Gamliel A, Katan T, Yunis H, Katan J (1996) Fusariumwilt and crown rot of sweet basil: involvement of soilborne and airborne inoculum. Phytopathology 86:56–62

    Google Scholar 

  • Gao XN, He QR, Jiang Y, Huang LL (2016) Optimization of nutrient and fermentation parameters for antifungal activity by Streptomyces lavendulaeXjy and its biocontrol efficacies against Fulvia fulvaand Botryosphaeria dothidea. J Phytopathol 164(3):155–165. https://doi.org/10.1111/jph.12440

  • Garibaldi A, Gullino ML (2010) Emerging diseases of horticultural crops and new trends in their management. Acta Horticult 883:37–47

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Gullino ML (2004) Varietal resistance of lettuce to Fusarium oxysporum f. sp lactucae. Crop Prot 23(9):845–851. https://doi.org/10.1016/j.cropro.2004.01.005

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Franco Ortega S, Gullino ML (2016a) First report of leaf spot of lamb’s lettuce (Valerianella olitoria) caused by Myrothecium roridum in Italy. Plant Dis 100:1237

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Franco Ortega S, Gullino ML (2016b) First report of leaf spot of spinach (Spinacia oleracea) caused by Myrothecium verrucaria in Italy. Plant Dis 100:1786

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Franco Ortega S, Gullino ML (2016c) First report of leaf spot of wild rocket (Diplotaxis tenuifolia) caused by Myrothecium verrucaria in Italy. J Plant Pathol 98:677–697

    Google Scholar 

  • Garibaldi A, Pintore I, Gilardi G, Gullino ML (2016d) Resistenza a mefenoxam in popolazioni di Peronospora belbahrii. Protezione Colture 9(5):13–16

    Google Scholar 

  • Gasparotto F, de Oliveira RR, Penharbel MP, Tessmann DJ, do Nascimento JF, Vida JB (2016) Effect of grafting on the control of gummy stem blight in muskmelons. Semin Cienc Agrarias 37(5):2859–2866. https://doi.org/10.5433/1679-0359.2016v37n5p2859

    Article  Google Scholar 

  • Ghasemi S, Abbasi S, Bahraminejad S, Harighi B (2012) Inhibitory effect of some plant crude extracts against cucumber damping-off agents. Australas Plant Pathol 41(3):331–338. https://doi.org/10.1007/s13313-012-0129-3

    Article  Google Scholar 

  • Gilardi G, Demarchi S, Garibaldi A, Gullino ML (2013) Management of downy mildew of sweet basil (Ocimum basilicum) caused by Peronospora belbahrii by means of resistance inducers, fungicides, biocontrol agents and natural products. Phytoparasitica 41:59–72

    Article  CAS  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2014) Managing Phytophthora crown and root rot on tomato by pre-plant treatments with biocontrol agents, resistance inducers, organic and mineral fertilizers under nursery conditions. Phytopathol Mediterr 53(2):205–215

    Google Scholar 

  • Gilardi G, Pintore I, Demarchi S, Gullino ML, Garibaldi A (2015) Seed dressing to control downy mildew of basil. Phytoparasitica 44:531–539

    Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2016) Evaluation of the short term effect of nursery treatments with phosphite-based products, acibenzolar-S-methyl, pelleted Brassica carinata and biocontrol agents, against lettuce and cultivated rocket fusarium wilt under artificial inoculation and greenhouse conditions. Crop Prot 85:23–32. https://doi.org/10.1016/j.cropro.2016.03.011

    Article  CAS  Google Scholar 

  • Gilardi G, Gullino ML, Garibaldi A (2018) Emerging foliar and soil-borne pathogens of leafy vegetable crops: a possible threat to Europe. EPPO Bull

    Google Scholar 

  • Giotis C, Theodoropoulou A, Cooper J, Hodgson R, Shotton P, Shiel R, Eyre M, Wilcockson S, Markellou E, Liopa-Tsakalidis A, Volakakis N, Leifert C (2012) Effect of variety choice, resistant rootstocks and chitin soil amendments on soil-borne diseases in soil-based, protected tomato production systems. Eur J Plant Pathol 134(3):605–617. https://doi.org/10.1007/s10658-012-0041-2

    Article  CAS  Google Scholar 

  • Glawe DA, Sampangi RK, Mohan K, Shock CC, Feibert E (2009) Incidence of Leveillula tauricaon onion and expansion of its host range to native plant species in the Treasure Valley region of Idaho and Oregon. Phytopathology 99(6):S43–S44

    Google Scholar 

  • Goldberg NP, Stanghellini ME, Rasmussen SL (1992) Filtration as a method for controlling Pythiumroot-rot of hydroponically grown cucumbers. Plant Dis 76(8):777–779

    Google Scholar 

  • Gonzalez C, Brito N, Sharon A (2016) Infection process and fungal virulence factors. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 229–246. https://doi.org/10.1007/978-3-319-23371-0_9

  • Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solanidamping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169(1):59–65. https://doi.org/10.1016/j.micres.2013.06.014

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10(13):751–757. https://doi.org/10.1016/s0960-9822(00)00560-1

  • Grube R, Ryder E (2004) Identification of lettuce (Lactuca sativa L.) germplasm with genetic resistance to drop caused by Sclerotinia minor. J Am Soc Hortic Sci 129(1):70–76

    Google Scholar 

  • Guan WJ, Zhao X, Hassell R, Thies J (2012) Defense mechanisms involved in disease resistance of grafted vegetables. Hortscience 47(2):164–170

    Article  CAS  Google Scholar 

  • Guimaraes RL, Chetelat RT, Stotz HU (2004) Resistance to Botrytis cinereain Solanum lycopersicoides is dominant in hybrids with tomato, and involves induced hyphal death. Eur J Plant Pathol 110(1):13–23. https://doi.org/10.1023/B:EJPP.0000010133.62052.e4

  • Gullino ML, Garibaldi A (2006) Evolution of fungal diseases of ornamental plants and main implications for their management. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st edn. Global Science Books, London, pp 464–471

    Google Scholar 

  • Gullino ML, Katan J, Garibaldi A (2012) Fusariumwilts of greenhouse vegetable and ornamental crops. APS Press, St Paul

    Google Scholar 

  • Gullino ML, Gilardi G, Garibaldi A (2014) Seed-borne pathogens of leafy vegetable crops. In: Gullino ML, Munkvold G (eds) Global perspectives on the health of seeds and plant propagation material. Springer, Dordrecht, pp 47–53

    Chapter  Google Scholar 

  • Gwynn RL (2014) The manual of biocontrol agents. In: A world compendium, 5th edn. BCPC, Hampshire

    Google Scholar 

  • Hasna MK, Martensson A, Persson P, Ramert B (2007) Use of composts to manage corky root disease in organic tomato production. Ann Appl Biol 151(3):381–390. https://doi.org/10.1111/j.1744-7348.2007.00178.x

    Article  Google Scholar 

  • Hasna MK, Ogren E, Persson P, Martensson A, Ramert B (2009) Management of corky root disease of tomato in participation with organic tomato growers. Crop Prot 28(2):155–161. https://doi.org/10.1016/j.cropro.2008.09.011

    Article  Google Scholar 

  • Hayes RJ, Wu BM, Pryor BM, Chitrampalam P, Subbarao KV (2010) Assessment of resistance in lettuce (Lactuca sativa L.) to mycelial and ascospore infection by Sclerotinia minorJagger and S. sclerotiorum (Lib.) de Bary. Hortscience 45(3):333–341

    Google Scholar 

  • Helal IM (2017) Control of damping-off disease in some plants using environmentally safe biocides. Pak J Bot 49(1):361–370

    CAS  Google Scholar 

  • Hieno A, Naznin HA, Suga H, Yamamoto YY, Hyakumachi M (2016) Specific detection of type 1 and type 2 isolates of Pyrenochaeta lycopersiciby loop-mediated isothermal amplification reaction. Acta Agric Scand Sect B Soil Plant Sci 66(4):353–358. https://doi.org/10.1080/09064710.2015.1120341

  • Hoitink HAJ, Locke JC (2012) An integrated approach to biological control of Fusarium species in containerized crops. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable and ornamental crops. APS Press, St Paul, pp 109–115

    Google Scholar 

  • Hollomon DW, Wheeler IE (2002) Controlling powdery mildews with chemistry. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS press, St. Paul, pp 249–255

    Google Scholar 

  • Horst RK (1989) Compendium of rose diseases. APS Press, St-Paul

    Google Scholar 

  • Huang HC, Chang C, Kozub GC (1998) Effect of temperature during sclerotial formation, sclerotial dryness, and relative humidity on myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Can J Bot 76:494–499

    Google Scholar 

  • Infantino A, Pucci N (2005) A PCR-based assay for the detection and identification of Pyrenochaeta lycopersici. Eur J Plant Pathol 112(4):337–347. https://doi.org/10.1007/s10658-005-6605-7

  • Infantino A, Aragona M, Brunetti A, Lahoz E, Oliva A, Porta-Puglia A (2003) Molecular and physiological characterization of Italian isolates of Pyrenochaeta lycopersici. Mycol Res 107:707–716. https://doi.org/10.1017/s0953756203007962

  • Infantino A, Pucci N, Aragona M, de Felice S, Rau D (2015) Genetic structure of Italian populations of Pyrenochaeta lycopersici, the causal agent of corky root rot of tomato. Plant Pathol 64(4):941–950. https://doi.org/10.1111/ppa.12326

  • Ioannou N (2000) Soil solarization as a substitute for methyl bromide fumigation in greenhouse tomato production in Cyprus. Phytoparasitica 28(3):248–256. https://doi.org/10.1007/bf02981803

    Article  Google Scholar 

  • Ioannou N (2001) Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J Hortic Sci Biotechnol 76(4):396–401

    Article  Google Scholar 

  • Isaac I (1967) Speciation in Verticillium. Annu Rev Phytopathol 5:201–222

    Article  Google Scholar 

  • Ivors KL, Bartz FE, Toda T, Naito S, Cubeta MA (2009) First report of tomato foliar blight caused by Rhizoctonia solaniAG-3 basidiospore infection in North America. Phytopathology 99(6):S57–S57

    Google Scholar 

  • Jahn M, Munger HM, McCreight JD (2002) Breeding cucurbit crops for powdery mildew resistance. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS press, St. Paul, pp 239–248

    Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solanisuppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118. https://doi.org/10.1016/j.soilbio.2013.10.051

  • Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, St. Paul

    Google Scholar 

  • Jarvis WR, Shipp JL, Gardiner RB (1993) Transmission of Pythium aphanidermatum to greenhouse cucumber by the fungus gnat Bradysia impatiens(Diptera, Sciaridae). Ann Appl Biol 122(1):23–29. https://doi.org/10.1111/j.1744-7348.1993.tb04010.x

  • Jarvis WR, Gubler WD, Grove GG (2002) Epidemiology of powdery mildews in agricultural pathosystems. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS press, St. Paul, pp 169–199

    Google Scholar 

  • Jones WB, Thomson SV (1987) Source of inoculum, yield, and quality of tomato as affected by Leveillula taurica. Plant Dis 71:266–268

    Article  CAS  Google Scholar 

  • Kanetis L, Christodoulou S, Iacovides T (2017) Fungicide resistance profile and genetic structure of Botrytis cinereafrom greenhouse crops in Cyprus. Eur J Plant Pathol 147(3):527–540. https://doi.org/10.1007/s10658-016-1020-9

  • Kasselaki AM, Malathrakis NE, Goumas DE, Cooper JM, Leifert C (2008) Effect of alternative treatments on seed-borne Didymella lycopersiciin tomato. J Appl Microbiol 105(1):36–41. https://doi.org/10.1111/j.1365-2672.2007.03715.x

  • Katan J (1971) Symptomless carriers of the tomato Fusariumwilt pathogen. Phytopathology 61:1213–1217

    Google Scholar 

  • Katan J (2005) Soil disinfestation: one minute before methyl bromide phase-out. Acta Horticult 698:19–26

    Article  Google Scholar 

  • Katan T, Katan J (1999) Vegetative compatibility grouping in Fusarium oxysporum f. sp. radicis-lycopersici from the UK, the Netherlands, Belgium and France. Plant Pathol 48:541–549

    Article  Google Scholar 

  • Kataria HR, Wilmsmeier B, Buchenauer H (2002) Efficacy of Pseudomonas fluorescens strains and some modern fungicides for control of Rhizoctonia solani AG-4 in bean and cucumber. Z Pflanzenkrankh Pflanzenschutz 109(4):384–400

    Google Scholar 

  • Keinath AP (2008) Survival of Didymella bryoniaein infested muskmelon crowns in South Carolina. Plant Dis 92(8):1223–1228. https://doi.org/10.1094/pdis-92-8-1223

  • Keinath AP (2009) Sensitivity to azoxystrobin in Didymella bryoniaeisolates collected before and after field use of strobilurin fungicides. Pest Manag Sci 65(10):1090–1096. https://doi.org/10.1002/ps.1797

  • Keinath AP (2011) From native plants in Central Europe to cultivated crops worldwide: the emergence of Didymella bryoniaeas a cucurbit pathogen. Hortscience 46(4):532–535

    Google Scholar 

  • Keinath AP (2012) Differential sensitivity to boscalid in conidia and ascospores of Didymella bryoniaeand frequency of boscalid-insensitive isolates in South Carolina. Plant Dis 96(2):228–234. https://doi.org/10.1094/pdis-06-11-0490

  • Keinath AP (2014) Differential susceptibility of nine cucurbit species to the foliar blight and crown canker phases of gummy stem blight. Plant Dis 98(2):247–254. https://doi.org/10.1094/pdis-05-13-0510-re

  • Keinath AP, DuBose VB (2017) Disinfectant treatments that reduce transmission of Stagonosporopsis citrulliduring cucurbit grafting. Plant Dis 101(11):1895–1902. https://doi.org/10.1094/pdis-03-17-0451-re

  • Keinath AP, Hansen ZR (2013) Isolates of Didymella bryoniaefrom South Carolina remain sensitive to DMI fungicides despite multiyear exposure. J Phytopathol 161(5):315–323. https://doi.org/10.1111/jph.12063

  • Keinath AP, Zitter TA (1998) Resistance to benomyl and thiophanate-methyl in Didymella bryoniaefrom South Carolina and New York. Plant Dis 82(5):479–484. https://doi.org/10.1094/pdis.1998.82.5.479

  • Kennedy C, Hasing TN, Peres NA, Whitaker VM (2013) Evaluation of strawberry species and cultivars for powdery mildew resistance in open-field and high tunnel production systems. Hortscience 48(9):1125–1129

    Article  Google Scholar 

  • Kipngeno P, Losenge T, Maina N, Kahangi E, Juma P (2015) Efficacy of Bacillus subtilis and Trichoderrna asperellumagainst Pythium aphanidermaturnin tomatoes. Biol Control 90:92–95. https://doi.org/10.1016/j.biocontro1.2015.05.017

  • Kiss L, Cook RTA, Saenz GS, Cunnington JH, Takamatsu S, Pascoe I, Bardin M, Nicot PC, Sato Y, Rossman Y (2001) Identification of two powdery mildew fungi, Oidium neolycopersici sp nov and O. lycopersici, infecting tomato in different parts of the world. Mycol Res 105:684–697. https://doi.org/10.1017/s0953756201004105

    Article  Google Scholar 

  • Kistler HC (1997) Genetic diversity in the plant-pathogenic fungus Fusarium oxysporum. Phytopathology 87:474–479

    Article  CAS  PubMed  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  CAS  PubMed  Google Scholar 

  • Knight DE, Keyworth WG (1960) Didymellastem-rot of outdoor tomatoes I. Studies on sources of infection and their elimination. Ann Appl Biol 48(2):245–258. https://doi.org/10.1111/j.1744-7348.1960.tb03521.x

  • Kunoh H (2002) Localized induction of accessibility and inaccessibility by powdery mildew. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS press, St. Paul, pp 127–133

    Google Scholar 

  • Lam CH, Lim TK (1993) Efficacy of hexaconazole for the control of white rust on chrysanthemum and powdery mildew on roses. Int J Pest Manag 39(2):156–160. https://doi.org/10.1080/09670879309371782

    Article  CAS  Google Scholar 

  • Laterrot H (1986) Race-259, a new race of Cladosporium fulvum(Fulvia fulva) and sources of resistance in tomato. Neth J Plant Pathol 92(6):305–307. https://doi.org/10.1007/bf01977592

  • Laterrot H, Clerjeau M (1979) Determination of Fulvia fulva(= Cladosporium fulvum) pathotypes existing on tomato in French glasshouses. Ann Amelior Plantes 29(4):447–462

    Google Scholar 

  • Laterrot H, Gerlagh M, Ester A, Stamova L (1985) Race 2.5, a new race of Cladosporium fulvum(Fulvia fulva) on tomato. Neth J Plant Pathol 91(1):45–47. https://doi.org/10.1007/bf01993442

  • Lebeda A, Mieslerovà B (2011) Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathol 60:400–415. https://doi.org/10.1111/j.1365-3059.2010.02399.x

    Article  Google Scholar 

  • Lebeda A, Zinkernagel V (2003) Evolution and distribution of virulence in the German population of Bremia lactucae. Plant Pathol 52(1):41–51. https://doi.org/10.1046/j.1365-3059.2003.00802.x

  • Lebeda A, Mieslerova B, Petrzelova I, Korbelova P, Cesnekova E (2012) Patterns of virulence variation in the interaction between Lactucaspp. and lettuce powdery mildew (Golovinomyces cichoracearum). Fungal Ecol 5(6):670–682. https://doi.org/10.1016/j.funeco.2012.03.005

  • Lebeda A, Kristkova E, Sedlakova B, McCreight JD, Coffey MD (2016) Cucurbit powdery mildews: methodology for objective determination and denomination of races. Eur J Plant Pathol 144(2):399–410. https://doi.org/10.1007/s10658-015-0776-7

    Article  Google Scholar 

  • Lecompte F, Abro MA, Nicot PC (2010) Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes. Plant Pathol 59(5):891–899. https://doi.org/10.1111/j.1365-3059.2010.02320.x

  • Lecompte F, Abro MA, Nicot PC (2013) Can plant sugars mediate the effect of nitrogen fertilization on lettuce susceptibility to two necrotrophic pathogens: Botrytis cinereaand Sclerotinia sclerotiorum? Plant Soil 369(1–2):387–401. https://doi.org/10.1007/s11104-012-1577-9

  • Lee S, Garzon CD, Moorman GW (2010) Genetic structure and distribution of Pythium aphanidermatum populations in Pennsylvania greenhouses based on analysis of AFLP and SSR markers. Mycologia 102(4):774–784. https://doi.org/10.3852/09-018

  • Lee KY, Kong HG, Choi KH, Lee SW, Moon BJ (2011) Isolation and identification of Burkholderia pyrrociniaCH-67 to control tomato leaf mold and damping-off on crisphead lettuce and tomato. Plant Pathol J 27(1):59–67. https://doi.org/10.5423/ppj.2011.27.1.059

  • Lee JH, Park MS, Kim JC, Jang KS, Choi YH, Kim HT, Choi GJ (2013) Occurrence of leaf mold pathogen Fulvia fulvaisolates infecting tomato Cf-9 cultivars Korea. Korean J Hortic Sci Technol 31(6):740–747. https://doi.org/10.7235/hort.2013.13017

  • Lefebvre V, Daubeze AM, van der Voort JR, Peleman J, Bardin M, Palloix A (2003) QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107(4):661–666

    Article  CAS  PubMed  Google Scholar 

  • Lemaire JM, Ginoux G, Bardin M, Conus M, Ferrière H, Chastelière MG, Nicot P, Mas P (1998) Résistance à l’oïdium induite par greffage. Cult Légumière 45:13–16

    Google Scholar 

  • Lewis JA, Lumsden RD (2001) Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solaniwith a formulation of Trichodermaspp. Crop Prot 20(1):49–56. https://doi.org/10.1016/s0261-2194(00)00052-1

  • Lewis JA, Barksdale TH, Papavizas GC (1990) Greenhouse and field studies on the biological-control of tomato fruit rot caused by Rhizoctonia solani. Crop Prot 9(1):8–14. https://doi.org/10.1016/0261-2194(90)90039-a

  • Leyronas C, Bardin M, Duffaud M, Nicot PC (2015a) Compared dynamics of grey mould incidence and genetic characteristics of Botrytis cinereain neighbouring vegetable greenhouses. J Plant Pathol 97(3):439–447. https://doi.org/10.4454/jpp.v97i3.003

  • Leyronas C, Duffaud M, Pares L, Jeannequin B, Nicot PC (2015b) Flow of Botrytis cinereainoculum between lettuce crop and soil. Plant Pathol 64(3):701–708. https://doi.org/10.1111/ppa.12284

  • Leyronas C, Halkett F, Nicot PC (2015c) Relationship between the genetic characteristics of Botrytissp. airborne inoculum and meteorological parameters, seasons and the origin of air masses. Aerobiologia 31(3):367–380. https://doi.org/10.1007/s10453-015-9370-x

  • Li HX, Brewer MT (2016) Spatial genetic structure and population dynamics of gummy stem blight fungi within and among watermelon fields in the southeastern United States. Phytopathology 106(8):900–908. https://doi.org/10.1094/phyto-01-16-0006-r

  • Li MQ, Chen XG, Xue YB, Zhang WF, Tang XX (2009) The role of chitosan in protection of tomato from leaf mould caused by Fulvia fulva(cooke) ciffrri. In: Proceedings of 2009 international conference of natural product and traditional medicine. Vols 1 and 2

    Google Scholar 

  • Li MZ, Ishiguro Y, Otsubo K, Suzuki H, Tsuji T, Miyake N, Nagai H, Suga H, Kageyama K (2014) Monitoring by real-time PCR of three water-borne zoosporic Pythiumspecies in potted flower and tomato greenhouses under hydroponic culture systems. Eur J Plant Pathol 140(2):229–242. https://doi.org/10.1007/s10658-014-0456-z

  • Li HX, Stevenson KL, Brewer MT (2016) Differences in sensitivity to a triazole fungicide among Stagonosporopsisspecies causing gummy stem blight of cucurbits. Plant Dis 100(10):2106–2112. https://doi.org/10.1094/pdis-03-16-0341-re

  • Li JL, Kang TH, Talab KMA, Zhu FX, Li JH (2017) Molecular and biochemical characterization of dimethachlone resistant isolates of Sclerotinia sclerotiorum. Pestic Biochem Physiol 138:15–21. https://doi.org/10.1016/j.pestbp.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Rep M, Thomma BPHJ (2008) Recent developments in the molecular discrimination of formae speciales and races of Fusarium oxysporum. Pest Manag Sci 64:781–788

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Hanssen IM, Rep M (2012) Recent developments in the detection and identification of formae speciales and races of Fusarium oxysporum from pathogenicity testing to molecular diagnostics. In: Gullino ML, Katan J, Garibaldi A (eds) Fusariumwilts of greenhouse vegetable and ornamental crops. APS Press, St Paul, pp 47–55

    Google Scholar 

  • Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107(2):256–262. https://doi.org/10.1007/s00122-003-1240-1

  • Lindhout P, Korta W, Cislik M, Vos I, Gerlagh T (1989) Further identification of races of Cladosporium fulvum(Fulvia fulva) fulva on tomato originating from the Netherlands, France and Poland. Neth J Plant Pathol 95(3):143–148. https://doi.org/10.1007/bf01999969

  • Liu JB, Gilardi G, Gullino ML, Garibaldi A (2009) Effectiveness of Trichodermaspp. obtained from re-used soilless substrates against Pythium ultimum on cucumber seedlings. J Plant Dis Protect 116(4):156–163

    Google Scholar 

  • Liu SM, Che ZP, Chen GQ (2016) Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinereafrom tomato in Henan Province, China. Crop Prot 84:56–61. https://doi.org/10.1016/j.cropro.2016.02.012

  • Lopez-Reyes GG, Gilardi G, Garibaldi A, Gullino ML (2016) In vivo evaluation of essential oils and biocontrol agents combined with heat treatments on basil cv Genovese Gigante seeds against Fusarium oxysporum f. sp. basilici. Phytoparasitica 44:35–45

    Article  CAS  Google Scholar 

  • Lou L, Wang HY, Qian CT, Liu J, Bai YL, Chen JF (2013) Genetic mapping of gummy stem blight (Didymella bryoniae) resistance genes in Cucumis sativus-hystrix introgression lines. Euphytica 192(3):359–369. https://doi.org/10.1007/s10681-013-0860-z

  • Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A, Cordewener JHG, America AHP, Overmars HA, Van’t Klooster JW, Baranowski L, Sobczak M, Ilyas M, van der Hoorn RAL, Schots A, de Wit P, Bakker J, Goverse A, Smant G (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci USA 109(25):10119–10124. https://doi.org/10.1073/pnas.1202867109

  • Maisonneuve B, Allen-Aubouard C, Pitrat M (2013) Effect of plant genotype on the efficacy of stimulators of plant defences in two horticultural pathosystems. IOBC/WPRS Bull 89:327–331

    Google Scholar 

  • Malandrakis AA, Apostolidou ZA, Markoglou A, Flouri F (2015) Fitness and cross-resistance of Alternaria alternata field isolates with specific or multiple resistance to single site inhibitors and mancozeb. Eur J Plant Pathol 142(3):489–499. https://doi.org/10.1007/s10658-015-0628-5

    Article  CAS  Google Scholar 

  • Malathrakis N, Goumas DE (1999) Fungal and bacterial diseases. In: Albajes R, Gullino ML, Van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops, Developments in Plant Pathology, vol 14. Kluwer Academic Publishers, Dordrecht, pp 34–47

    Chapter  Google Scholar 

  • Malathrakis NE, Vakalounakis DJ (1983) Resistance to benzimidazole fungicides in the gummy stem blight pathogen Didymella bryoniaeon cucurbits. Plant Pathol 32(4):395–399. https://doi.org/10.1111/j.1365-3059.1983.tb02853.x

  • Malolepsza U, Nawrocka J, Szczech M (2017) Trichoderma virens106 inoculation stimulates defence enzyme activities and enhances phenolic levels in tomato plants leading to lowered Rhizoctonia solaniinfection. Biocontrol Sci Tech 27(2):180–199. https://doi.org/10.1080/09583157.2016.1264570

  • Martinson VA, Hogenboom NG (1968) Screening young tomato seedlings for resistance to Didymellafoot- and stem rot. Euphytica 17(2):173–182

    Google Scholar 

  • McCreight J, Matheron ME, Tickes BR, Platts B (2005) Fusariumwilt race 1 on lettuce. Hortscience 40:529–531

    Google Scholar 

  • Menzies JG, Ehret DL, Stan S (1996) Effect of inoculum density of Pythium aphanidermatum on the growth and yield of cucumber plants grown in recirculating nutrient film culture. Can J Plant Pathol 18(1):50–54

    Google Scholar 

  • Mersha Z, Zhang S, Fu YQ, Mo XD, Raid RN, Hau B (2013) Efficacy of acibenzolar-S-methyl and β-aminobutyric acid for control of downy mildew in greenhouse grown basil and peroxidase activity in response to treatment with these compounds. J Phytopathol 161:154–164

    Article  CAS  Google Scholar 

  • Miao JQ, Dong X, Lin D, Wang QS, Liu PF, Chen FR, Du YX, Liu XL (2016) Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes. Pest Manag Sci 72(8):1572–1577. https://doi.org/10.1002/ps.4189

    Article  CAS  PubMed  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridisand solarization. Crop Prot 25(5):468–475. https://doi.org/10.1016/j.cropro.2005.08.001

  • Misawa T, Kuninaga S (2010) The first report of tomato foot rot caused by Rhizoctonia solaniAG-3 PT and AG-2-Nt and its host range and molecular characterization. J Gen Plant Pathol 76(5):310–319. https://doi.org/10.1007/s10327-010-0261-2

  • Mohaghegh P, Khoshgoftarmanesh AH, Shirvani M, Sharifnabi B, Nili N (2011) Effect of silicon nutrition on oxidative stress induced by Phytophthora melonis infection in cucumber. Plant Dis 95(4):455–460. https://doi.org/10.1094/pdis-05-10-0379

  • Montealegre JR, Ochoa F, Besoain X, Herrera R, Perez LM (2014) In vitro and glasshouse biocontrol of Rhizoctonia solaniwith improved strains of Trichodermaspp. Cienc Investig Agrar 41(2):197–206. https://doi.org/10.4067/s0718-16202014000200006

  • Monteil CL, Bardin M, Morris CE (2014) Features of air masses associated with the deposition of Pseudomonas syringaeand Botrytis cinereaby rain and snowfall. ISME J 8(11):2290–2304. https://doi.org/10.1038/ismej.2014.55

  • Mostafa AA, Al-Rahmah AN, Yakout SM, Abd-Alrahman SH (2013) Bioactivity of garlic bulb extract compared with fungicidal treatment against tomato phytopathogenic fungi. J Pure Appl Microbiol 7(3):1925–1932

    Google Scholar 

  • Nash SM, Christou T, Snyder WC (1961) Existence of Fusarium solani f. sp. phaseoli as chlamidospores in soil. Phytopathology 51:308–312

    Google Scholar 

  • Nelson PE (1981) Life cycle and epidemiology of Fusarium oxysporum. In: Mace ME, Bell AA, Beckman CM (eds) Fungal wilt diseases of plants. Academic, New York, pp 51–80

    Chapter  Google Scholar 

  • Nga NTT, Giau NT, Long NT, Lubeck M, Shetty NP, de Neergaard E, Thuy TTT, Kim PV, Jorgensen HJL (2010) Rhizobacterially induced protection of watermelon against Didymella bryoniae. J Appl Microbiol 109(2):567–582. https://doi.org/10.1111/j.1365-2672.2010.04685.x

  • Nguyen TH, Mathur SB, Neergaard P (1973) Seed-borne species of Myrotheciumand their pathogenic potential. Trans Br Mycol Soc 61:347–354

    Google Scholar 

  • Nicot PC, Mermier M, Vaissiere BE, Lagier J (1996) Differential spore production by Botrytis cinereaon agar medium and plant tissue under near-ultraviolet light-absorbing polyethylene film. Plant Dis 80(5):555–558

    Google Scholar 

  • Nicot PC, Moretti A, Romiti C, Bardin M, Caranta C, Ferrière H (2002) Differences in susceptibility of pruning wounds and leaves to infection by Botrytis cinerea among wild tomato accessions. Tomato Genet Coop Rep 52:24–26

    Google Scholar 

  • Nicot PC, Bardin M, Alabouvette C, Köhl J, Ruocco M (2011) Potential of biological control based on published research. 1. Protection against plant pathogens of selected crops. In: Nicot PC (ed) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC/WPRS, pp 1–11

    Google Scholar 

  • Nicot PC, Stewart A, Bardin M, Elad Y (2016) Biological control and biopesticide suppression of Botrytis-incited diseases. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 165–187. https://doi.org/10.1007/978-3-319-23371-0_9

  • Nicot P.C., Avril F., Duffaud M., Leyronas C., Troulet C., Villeneuve F., Bardin M. (2019). Differential susceptibility to the mycoparasite Paraphaeosphaeria minitans among Sclerotinia sclerotiorum isolates. Trop Plant Pathol 44:82–93. https://doi.org/10.1007/s40858-018-0256-7

  • Nordskog B, Gadoury DM, Seem RC, Hermansen A (2007) Impact of diurnal periodicity, temperature, and light on sporulation of Bremia lactucae. Phytopathology 97(8):979–986. https://doi.org/10.1094/phyto-97-8-0979

  • Nordskog B, Elameen A, Gadoury DM, Hermansen A (2014) Virulence characteristics of Bremia lactucaepopulations in Norway. Eur J Plant Pathol 139(4):679–686. https://doi.org/10.1007/s10658-014-0422-9

  • O’Keefe G, Davis DD (2012) First confirmed report that Puccinia horiana, causal agent of chrysanthemum white rust, can overwinter in Pennsylvania. Plant Dis 96(9):1381–1381. https://doi.org/10.1094/pdis-04-12-0400-pdn

  • O’Neill TM, Pye D, Locke T (2002) The effect of fungicides, irrigation and plant density on the development of Peronospora sparsa, the cause of downy mildew in rose and blackberry. Ann Appl Biol 140(2):207–214. https://doi.org/10.1111/j.1744-7348.2002.tb00174.x

  • Palti J (1971) Biological characteristics, distribution and control of Leveillula taurica (Lev). Arn. Phytopathol Mediterr 10:139–153

    Google Scholar 

  • Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternataand Pyrenochaeta lycopersicion tomato with whey compost-tea applications. Crop Protect 38:80–86. https://doi.org/10.1016/j.cropro.2012.03.012

  • Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco MJ, Crute I, Michelmore R (2016) Rationalization of genes for resistance to Bremia lactucaein lettuce. Euphytica 210(3):309–326. https://doi.org/10.1007/s10681-016-1687-1

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133. https://doi.org/10.1146/annurev.phyto.39.1.103

    Article  CAS  PubMed  Google Scholar 

  • Paulus AO, Nelson J, Besemer S (1986) Fungicides for the control of rose powdery mildew (Sphaerotheca pannosavar rosae) and rust (Phragmidium mucronatum). Phytopathology 76(10):1071–1071

    Google Scholar 

  • Pegg GF, Brady BL (2002) Verticilliumwilts. CABI Publishing, New York

    Google Scholar 

  • Pei DL, Zhu XQ, Xu YY, Li CW (2017) First report of powdery mildew of strawberry (Fragaria × ananassa) caused by Golovinomyces orontii in China. Plant Dis 101(3):506. https://doi.org/10.1094/PDIS-09-16-1322-PDN

    Article  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat A (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95(5):556–565. https://doi.org/10.1094/phyto-95-0556

  • Perez LM, Besoain X, Reyes M, Pardo G, Montealegre J (2002) The expression of extracellular fungal cell wall hydrolytic enzymes in different Trichoderma harzianum isolates correlates with their ability to control Pyrenochaeta lycopersici. Biol Res 35(3–4):401–410

    Google Scholar 

  • Pintore I, Gilardi G, Gullino ML, Garibaldi A (2016) Detection of mefenoxam-resistant strains of Peronospora belbahrii, the causal agent of basil downy mildew, transmitted through infected seeds. Phytoparasitica 44(4). https://doi.org/10.1007/s12600-016-0538-x

  • Pitrat M, Dogimont C, Bardin M (1998) Resistance to fungal diseases of foliage in melon. In: McCreight JD (ed) Cucurbitaceae ‘98, evaluation and enhancement of cucurbit germplasm. ASHS Press, Alexandria, pp 167–173

    Google Scholar 

  • Pivonia S, de Cock A, Levita R, Etiel E, Cohen R (2012) Low temperatures enhance winter wilt of pepper plants caused by Pythiumsp. Phytoparasitica 40(5):525–531. https://doi.org/10.1007/s12600-012-0254-0

  • Postma J, Stevens LH, Wiegers GL, Davelaar E, Nijhuis EH (2009) Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenesstrain 3.1T8 and chitosan. Biol Control 48(3):301–309. https://doi.org/10.1016/j.biocontrol.2008.11.006

  • Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatumand Fusarium oxysporumf.sp radicis lycopersiciin tomato. Biol Control 67(2):284–291. https://doi.org/10.1016/j.biocontrol.2013.07.002

  • Pourmahdi A, Taheri P (2015) Genetic diversity of Thanatephorus cucumerisinfecting tomato in Iran. J Phytopathol 163(1):19–32. https://doi.org/10.1111/jph.12276

  • Pugliese M, Gilardi G, Garibaldi A, Gullino ML (2015) Organic amendments and soil suppressiveness: results with vegetable and ornamental crops. In: coord MMKaVA (ed) Organic amendments and soil suppressiveness in plant disease management, vol 46. pp 495–509

    Google Scholar 

  • Ramkissoon A, Francis J, Bowrin V, Ramjegathesh R, Ramsubhag A, Jayaraman J (2016) Bio-efficacy of a chitosan based elicitor on Alternaria solaniand Xanthomonas vesicatoriainfections in tomato under tropical conditions. Ann Appl Biol 169(2):274–283. https://doi.org/10.1111/aab.12299

  • Ramos-Garcia B, Shagarodsky T, Sandoval-Denis M, Ortiz Y, Malosso E, Costa PMO, Guarro J, Minter DW, Sosa D, Perez-Martinez S, Castaneda-Ruiz RF (2016) Morphology and phylogeny of Cladosporium subuliforme, causing yellow leaf spot of pepper in Cuba. Mycotaxon 131(3):693–702. https://doi.org/10.5248/131.693

  • Reuveni R, Perl M, Rotem J (1974) The effect of Leveillula taurica on leaf abscissions in peppers. Phytopathol Z 76:153–157

    Article  Google Scholar 

  • Reuveni M, Agapov V, Reuveni R (1996) Controlling powdery mildew caused by Sphaerotheca fuligineain cucumber by foliar sprays of phosphate and potassium salts. Crop Protect 15(1):49–53. https://doi.org/10.1016/0261-2194(95)00109-3

  • Ritz CM, Maier WFA, Oberwinkler F, Wissemann V (2005) Different evolutionary histories of two Phragmidiumspecies infecting the same dog rose hosts. Mycol Res 109:603–609. https://doi.org/10.1017/s095376205002844

  • Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protect 24(2):141–155. https://doi.org/10.1016/j.cropro.2004.07.004

  • Rupp S, Plesken C, Rumsey S, Dowling M, Schnabel G, Weber RWS, Hahn M (2017) Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance. Appl Environ Microbiol 83(9). https://doi.org/10.1128/aem.00269-17

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomycesbiocontrol agent for the suppression of Rhizoctoniadamping-off in tomato transplants. Biol Control 23(3):245–253. https://doi.org/10.1006/bcon.2001.1014

  • Sabaratnam S, Traquair JA (2015) Mechanism of antagonism by Streptomyces griseocarneus(strain Di944) against fungal pathogens of greenhouse-grown tomato transplants. Can J Plant Pathol 37(2):197–211. https://doi.org/10.1080/07060661.2015.1039062

  • Sanchez-Tellez S, Herrera-Cid R, Besoain-Canales X, Perez-Roepke LM, Montealegre-Andrade JR (2013) In vitroand in vivo inhibitory effect of solid and liquid Trichoderma harzianumformulations on biocontrol of Pyrenochaeta lycopersici. Interciencia 38(6):425–429

    Google Scholar 

  • Schettini TM, Legg EJ, Michelmore RW (1991) Insensitivity to metalaxyl in California populations of Bremia lactucaeand resistance of California lettuce cultivars to downy mildew. Phytopathology 81(1):64–70. https://doi.org/10.1094/Phyto-81-64

  • Schippers B, van Eck WH (1981) Formation and survival of chlamydospores in Fusarium. In: Nelson PE, Tousson JA, Cook RJ (eds) Fusarium diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, pp 250–260

    Google Scholar 

  • Schuerger AC, Hammer W (2009) Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum. Phytopathology 99(5):597–607. https://doi.org/10.1094/phyto-99-5-0597

  • Schulz DF, Linde M, Blechert O, Debener T (2009) Evaluation of genus Rosa germplasm for resistance to black spot, downy mildew and powdery mildew. Eur J Hortic Sci 74(1):1–9

    Google Scholar 

  • Seifi A, Gao DL, Zheng Z, Pavan S, Faino L, Visser RGF, Wolters AMA, Bai YL (2014) Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum lycopersicum) and its wild relatives. Eur J Plant Pathol 138(3):641–665. https://doi.org/10.1007/s10658-013-0314-4

  • Shanmugam V, Atri K, Gupta S, Kanoujia N, Naruka DS (2011) Selection and differentiation of Bacillusspp. antagonistic to Fusarium oxysporumf.sp lycopersici and Alternaria solaniinfecting tomato. Folia Microbiol 56(2):170–177. https://doi.org/10.1007/s12223-011-0031-3

  • Sharaf K, Lewinsohn D, Nevo E, Beharav A (2007) Virulence patterns of Bremia lactucaein Israel. Phytoparasitica 35(1):100–108. https://doi.org/10.1007/bf02981064

  • Shaw MW, Emmanuel CJ, Emilda D, Terhem RB, Shafia A, Tsamaidi D, Emblow M, van Kan JAL (2016) Analysis of cryptic, systemic Botrytisinfections in symptomless hosts. Front Plant Sci 7:62. https://doi.org/10.3389/fpls.2016.00625

  • Shi XJ, Ren L, Song YQ, Han JC, Liu HP, Zhang YJ (2015) Sensitivity of Alternaria solanito boscalid and control of boscalid resistance with commonly-used fungicides in Shanxi, China. Australas Plant Pathol 44(3):327–334. https://doi.org/10.1007/s13313-015-0352-9

  • Shishkoff N, Campbell RN (1990) Survival of Pyrenochaeta lycopersiciand the influence of temperature and cultivar resistance on the development of corky root of tomato. Plant Dis 74(11):889–894. https://doi.org/10.1094/pd-74-0889

  • Shtienberg D, Elad Y, Niv A, Nitzani Y, Kirshner B (1998) Significance of leaf infection by Botrytis cinereain stem rotting of tomatoes grown in non-heated greenhouses. Eur J Plant Pathol 104(8):753–763. https://doi.org/10.1023/a:1008690925443

  • Simmons EG (2000) Alternaria themes and variations (244–286). Species on Solanaceae. Mycotaxon 75:1–115

    Google Scholar 

  • Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27:64–67

    Article  Google Scholar 

  • Snyder WC, Smith SN (1981) Current status. In: Mace ME, Bell AA, Beckman CM (eds) Fungal wilt diseases of plants. Academic, New York, pp 22–50

    Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54(6):585–596. https://doi.org/10.1002/jobm.201200564

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK (2015) Characterization of antagonistic-potential of two Bacillusstrains and their biocontrol activity against Rhizoctonia solaniin tomato. J Basic Microbiol 55(1):82–90. https://doi.org/10.1002/jobm.201300528

  • Sombardier A, Dufour MC, Blancard D, Corio-Costet MF (2010) Sensitivity of Podosphaera aphanisisolates to DMI fungicides: distribution and reduced cross-sensitivity. Pest Manag Sci 66(1):35–43. https://doi.org/10.1002/ps.1827

  • Spencer DM (1979) Carnation rust and its control by systemic fungicides. Plant Pathol 28(1):10–16. https://doi.org/10.1111/j.1365-3059.1979.tb02611.x

    Article  CAS  Google Scholar 

  • Spencer DM (1980) Parasitism of carnation rust (Uromyces dianthi) by Verticillium lecanii. Trans Br Mycol Soc 74(February):191–194

    Google Scholar 

  • Stewart JE, Turner AN, Brewer MT (2015) Evolutionary history and variation in host range of three Stagonosporopsisspecies causing gummy stem blight of cucurbits. Fungal Biol 119(5):370–382. https://doi.org/10.1016/j.funbio.2014.12.008

  • Strashnov Y, Elad Y, Sivan A, Rudich Y, Chet I (1985) Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianumRifai. Crop Protect 4(3):359–364. https://doi.org/10.1016/0261-2194(85)90039-0

  • Sudisha J, Niranjana SR, Umesha S, Prakash HS, Shetty HS (2006) Transmission of seed-borne infection of muskmelon by Didymella bryoniaeand effect of seed treatments on disease incidence and fruit yield. Biol Control 37(2):196–205. https://doi.org/10.1016/j.biocontrol.2005.11.018

  • Sultana V, Baloch GN, Ara J, Ehteshamul-Haque S, Tariq RM, Athar M (2011) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual Angew Bot 84(2):162–168

    CAS  Google Scholar 

  • Termorshuizen AJ (2012) Practical management of Fusariumwilt. In: Gullino ML, Katan J, Garibaldi A (eds) Fusariumwilts of greenhouse vegetable and ornamental crops. APS Press, St Paul, pp 133–140

    Google Scholar 

  • Thines M, Runge F, Telle S, Voglmayr H (2010) Phylogenetic investigations in the downy mildew genus Bremiareveal several distinct lineages and a species with a presumably exceptional wide host range. Eur J Plant Pathol 128(1):81–89. https://doi.org/10.1007/s10658-010-9632-y

  • Tok FM, Dervis S, Arslan M (2016) Analysis of genetic diversity of Sclerotinia sclerotiorumfrom eggplant by mycelial compatibility, random amplification of polymorphic DNA (RAPD) and simple sequence repeat (SSR) analyses. Biotechnol Biotechnol Equip 30(5):921–928. https://doi.org/10.1080/13102818.2016.1208059

  • Tomazoni EZ, Pauletti GF, Ribeiro RTD, Moura S, Schwambach J (2017) In vitroand in vivoactivity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulusand Cinnamomum camphora against Alternaria solaniSorauer causing early blight in tomato. Sci Hortic 223:72–77. https://doi.org/10.1016/j.scienta.2017.04.033

  • Torres DE, Rojas-Martinez RI, Zavaleta-Mejia E, Guevara-Fefer P, Marquez-Guzman GJ, Perez-Martinez C (2017) Cladosporium cladosporioidesand Cladosporium pseudocladosporioidesas potential new fungal antagonists of Puccinia horianaHenn., the causal agent of chrysanthemum white rust. Plos One 12(1):e0170782. https://doi.org/10.1371/journal.pone.0170782

  • Trujillo EE, Shimabuku R, Cavin CA, Aragaki M (1988) Rhizoctonia solani anastomosis groupings in carnation fields and their pathogenicity to carnation. Plant Dis 72(10):863–865. https://doi.org/10.1094/pd-72-0863

  • Urbasch I (1986) Resistance of different cultivated and wild tomato plants (Lycopersiconspp) to Botrytis cinereaPers. J Phytopathol Phytopathol Z 116(4):344–351. https://doi.org/10.1111/j.1439-0434.1986.tb00930.x

  • Utkhede R, Bogdanoff C (2003) Influence of lysozyme, yeast, azoxystrobin, and myclobutanil on fungal diseases of cucumbers grown hydroponically. Crop Protect 22(2):315–320. https://doi.org/10.1016/s0261-2194(02)00154-0

    Article  CAS  Google Scholar 

  • Utkhede RS, Koch CA (2002) Chemical and biological treatments for control of gummy stem blight of greenhouse cucumbers. Eur J Plant Pathol 108(5):443–448. https://doi.org/10.1023/a:1016039130095

    Article  CAS  Google Scholar 

  • Utkhede RS, Koch CA (2004) Evaluation of biological and chemical treatments for control of gummy stem blight on cucumber plants grown hydroponically in greenhouses. Biocontrol 49(1):109–117. https://doi.org/10.1023/B:BICO.0000009394.75429.a7

    Article  CAS  Google Scholar 

  • Utkhede RS, Levesque CA, Dinh D (2000) Pythium aphanidermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. Can J Plant Pathol 22(2):138–144

    Google Scholar 

  • Vakalounakis DJ, Klironomou E, Papadakis A (1994) Species spectrum, host-range and distribution of powdery mildews on Cucurbitaceae in Crete. Plant Pathol 43(5):813–818. https://doi.org/10.1111/j.1365-3059.1994.tb01625.x

    Article  Google Scholar 

  • Valente MT, Infantino A, Aragona M (2011) Molecular and functional characterization of an endoglucanase in the phytopathogenic fungus Pyrenochaeta lycopersici. Curr Genet 57(4):241–251. https://doi.org/10.1007/s00294-011-0343-5

  • Vallance J, Deniel F, Le Floch G, Guerin-Dubrana L, Blancard D, Rey P (2011) Pathogenic and beneficial microorganisms in soilless cultures. Agron Sustain Dev 31(1):191–203. https://doi.org/10.1051/agro/2010018

    Article  Google Scholar 

  • Van Beneden S, Pannecoucque J, Debode J, De Backer G, Hofte M (2009) Characterisation of fungal pathogens causing basal rot of lettuce in Belgian greenhouses. Eur J Plant Pathol 124(1):9–19. https://doi.org/10.1007/s10658-008-9385-z

    Article  Google Scholar 

  • Van Hese N, Huang CJ, De Vleesschauwer D, Delaere I, Pauwelyn E, Bleyaert P, Hofte M (2016) Evolution and distribution of virulence characteristics of Belgian Bremia lactucaepopulations between 2008 and 2013. Eur J Plant Pathol 144(2):431–441. https://doi.org/10.1007/s10658-015-0779-4

  • Vatchev T, Maneva S (2012) Chemical control of root rot complex and stem rot of greenhouse cucumber in straw-bale culture. Crop Protect 42:16–23. https://doi.org/10.1016/j.cropro.2012.08.001

    Article  CAS  Google Scholar 

  • Veloukas T, Bardas GA, Karaoglanidis GS, Tzavella-Klonari K (2007) Management of tomato leaf mould caused by Cladosporium fulvumwith trifloxystrobin. Crop Prot 26(6):845–851. https://doi.org/10.1016/j.cropro.2006.08.005

  • Vestberg M, Kukkonen S, Parikka P, Yu D, Romantschuk M (2014) Reproducibility of suppression of Pythiumwilt of cucumber by compost. Agric Food Sci 23(3):236–245

    Google Scholar 

  • Vitale A, Castello I, Cascone G, D'Emilio A, Mozzarella R, Polizzi G (2011) Reduction of corky root infections on greenhouse tomato crops by soil solarization in South Italy. Plant Dis 95(2):195–201. https://doi.org/10.1094/pdis-06-10-0418

    Article  CAS  PubMed  Google Scholar 

  • Walker AS (2016) Diversity within and between species of Botrytis. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, pp 91–125. https://doi.org/10.1007/978-3-319-23371-0_9

  • Walker AS, Gautier A, Confais J, Martinho D, Viaud M, Le Pecheur P, Dupont J, Fournier E (2011) Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101(12):1433–1445. https://doi.org/10.1094/phyto-04-11-0104

  • Walker AS, Gladieux P, Decognet V, Fermaud M, Confais J, Roudet J, Bardin M, Bout A, Nicot PC, Poncet C, Fournier E (2015) Population structure and temporal maintenance of the multihost fungal pathogen Botrytis cinerea: causes and implications for disease management. Environ Microbiol 17(4):1261–1274. https://doi.org/10.1111/1462-2920.12563

  • Wehner TC, Shetty NV (2000) Screening the cucumber germplasm collection for resistance to gummy stem blight in North Carolina field tests. Hortscience 35(6):1132–1140

    Article  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao HW, Zhang ZH, Kaloshian I, Huang HD, Jin HL (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154):118–123. https://doi.org/10.1126/science.1239705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Bellinger M, Jin HL (2014) Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol 52:495–516. https://doi.org/10.1146/annurev-phyto-102313-045933

  • Wilson AW, Aime MC (2014) The rose rust fungus, Phragmidium tuberculatum, is widespread in the Americas: first reports from California, Oregon, Massachusetts, and Honduras. Plant Dis 98(11):1581–1581. https://doi.org/10.1094/pdis-03-14-0248-pdn

  • Wit Pd, Joosten M (1999) Avirulence and resistance genes in the Cladosporium fulvum-tomato interaction. Curr Opin Microbiol 2(4):368–373. https://doi.org/10.1016/s1369-5274(99)80065-4

  • Wollenber HW, Reinking OA (1935) Die Fusarien, ihre Beschreiburg, Schadwirkung, and Bekampfung. Paul Parey, Berlin

    Google Scholar 

  • Wolukau JN, Zhou XH, Li Y, Zhang YB, Chen JF (2007) Resistance to gummy stem blight in melon (Cucumis melo L.) germplasm and inheritance of resistance from plant introductions 157076, 420145, and 323498. Hortscience 42(2):215–221

    Article  Google Scholar 

  • Workneh F, Vanbruggen AHC (1994) Suppression of corky root of tomatoes in soils from organic farms associated with soil microbial activity and nitrogen status of soil and tomato tissue. Phytopathology 84(7):688–694. https://doi.org/10.1094/Phyto-84-688

    Article  Google Scholar 

  • Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternariaredefined. Stud Mycol 75:171–212. https://doi.org/10.3114/sim0015

  • Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BPHJ, Crous PW (2015) Alternaria section Alternaria: species, formae speciales or pathotypes ? Stud Mycol 82:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyenandt CA, Simon JE, Pyne RM, Homa K, McGrath MT, Zhang S, Raid RN, Ma LJ, Wick R, Guo L, Madeiras A (2015) Basil Downy Mildew (Peronospora belbahrii): discoveries and challenges relative to its control. Phytopathology 105:885–894

    Article  PubMed  Google Scholar 

  • Xiao CL, Chandler CK, Price JF, Duval JR, Mertely JC, Legard DE (2001) Comparison of epidemics of Botrytisfruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. Plant Dis 85(8):901–909. https://doi.org/10.1094/pdis.2001.85.8.901

  • Yan LY, Chen J, Zhang CQ, Ma ZH (2008) Molecular characterization of benzimidazole-resistant isolates of Cladosporium fulvum. FEMS Microbiol Lett 278(2):242–248. https://doi.org/10.1111/j.1574-6968.2007.00999.x

  • Yao XF, Li PF, Xu JH, Zhang M, Ren RS, Liu G, Yang XP (2016) Rapid and sensitive detection of Didymella bryoniaeby visual loop-mediated isothermal amplification assay. Front Microbiol 7:1372. https://doi.org/10.3389/fmicb.2016.01372

  • Yarwood CE (1978) History and taxonomy of powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 1–37

    Google Scholar 

  • Yildirim E, Erper I (2017) Characterization and pathogenicity of Rhizoctoniaspp. isolated from vegetable crops grown in greenhouses in Samsun province, Turkey. Biosci J 33(20):257–267

    Google Scholar 

  • Yildiz A, Doken MT (2002) Anastomosis group determination of Rhizoctonia solani Kuhn (Telemorph: Thanatephorus cucumeris) isolates from tomatoes grown in Aydin, Turkey and their disease reaction on various tomato cultivars. J Phytopathol Phytopathol Z 150(10):526–528. https://doi.org/10.1046/j.1439-0434.2002.00785.x

  • Youssef SA, Tartoura KA, Abdelraouf GA (2016) Evaluation of Trichoderma harzianumand Serratia proteamaculanseffect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control 100:79–86. https://doi.org/10.1016/j.biocontrol.2016.06.001

  • Zeng J, Sun J, Xu Y, Chen FD, Jiang JF, Fang WM, Chen SM (2013) Variation for resistance to white rust (Puccinia horiana) among Ajaniaand Chrysanthemumspecies. Hortscience 48(10):1231–1234

    Google Scholar 

  • Zhang J, Bruton BD, Biles CL (2014) Cell wall-degrading enzymes of Didymella bryoniaein relation to fungal growth and virulence in cantaloupe fruit. Eur J Plant Pathol 139(4):749–761. https://doi.org/10.1007/s10658-014-0429-2

  • Zhang N, Xu BH, Bi YF, Lou QF, Chen JF, Qian CT, Zhang YB, Yi HP (2017) Development of a muskmelon cultivar with improved resistance to gummy stem blight and desired agronomic traits using gene pyramiding. Czech J Genet Plant Breed 53(1):23–29. https://doi.org/10.17221/84/2016-cjgpb

    Article  CAS  Google Scholar 

  • Zhao Y, Tu K, Shao XF, Jing W, Yang JL, Su ZP (2008) Biological control of the post-harvest pathogens Alternaria solani, Rhizopus stolonifer, and Botrytis cinereaon tomato fruit by Pichia guilliermondii. J Hortic Sci Biotechnol 83(1):132–136

    Google Scholar 

  • Zhao J, Xue QH, Shen GH, Xue L, Duan JL, Wang DS (2012) Evaluation of Streptomycesspp. for biocontrol of gummy stem blight (Didymella bryoniae) and growth promotion of Cucumis melo L. Biocontrol Sci Tech 22(1):23–37. https://doi.org/10.1080/09583157.2011.636481

  • Zhu ZQ, Zhou F, Li JL, Zhu FX, Ma HJ (2016) Carbendazim resistance in field isolates of Sclerotinia sclerotiorumin China and its management. Crop Protect 81:115–121. https://doi.org/10.1016/j.cropro.2015.12.011

  • Zohora US, Ano T, Rahman MS (2016) Biocontrol of Rhizoctonia solaniK1 by Iturin A producer Bacillus subtilisRB14 seed treatment in tomato plants. Adv Microbiol 6(6):424–431. https://doi.org/10.4236/aim.2016.66042

  • Zuniga TL, Jantz JP, Zitter TA, Jahn MK (1999) Monogenic dominant resistance to gummy stem blight in two melon (Cucumis melo) accessions. Plant Dis 83(12):1105–1107. https://doi.org/10.1094/pdis.1999.83.12.1105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardin, M., Gullino, M.L. (2020). Fungal Diseases. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_3

Download citation

Publish with us

Policies and ethics