Skip to main content

QKD Protocols Security Between Theory and Engineering Implementation

  • Chapter
  • First Online:
Handbook of Computer Networks and Cyber Security

Abstract

Quantum cryptography is proposed as a big revolution in IT security, even some theoretical studies considered that the exploitation of quantum physics features can enable us to get unconditional security. With the passage of time, appeared the quantum cryptanalysis which includes in the beginning a collection of theoretical quantum hacking strategies. However, the implementation of quantum key distribution protocols (QKD) showed several vulnerabilities in quantum cryptography scheme, which exploited to spy on the quantum communication. Therefore, the engineering implementation of QKD protocols showed a significant difference between the theoretical promises and experiment results. In order to make QKD protocols more applicable in real security solutions, we analyze in this contribution the variation of the security level of QKD protocols between the quantum theory and the implementation phase. In the same context, we focus on the quantum attacks via exploiting the vulnerabilities of classical devises using in the implementation phase and these impact on the security level of QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, B. B., Agrawal, D. P., & Yamaguchi, S. (2016). Handbook of research on modern cryptographic solutions for computer and cyber security. Hershey: IGI Global.

    Book  Google Scholar 

  2. Gupta, B. B. (2018). Computer and cyber security: Principles, algorithm, applications, and perspectives (Vol. 666). Boca Raton: CRC Press.

    Google Scholar 

  3. Wang, L., Li, L., Li, J., Li, J., Gupta, B. B., & Liu, X. (2018). Compressive sensing of medical images with confidentially homomorphic aggregations. IEEE IoT Journal, 6, 1402–1409.

    Google Scholar 

  4. Tewari, A., & Gupta, B. B. (2018). Security, privacy and trust of different layers in internet-of-things (IoTs) framework. Future generation computer systems. Amsterdam: Elsevier.

    Google Scholar 

  5. Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation Computer Systems, 78, 964–975.

    Article  Google Scholar 

  6. Adat, V., & Gupta, B. B. (2018). Security in Internet of Things: Issues, challenges, taxonomy, and architecture. Telecommunication Systems, 67(3), 423–441.

    Article  Google Scholar 

  7. Gupta, S., & Gupta, B. B. (2017). Detection, avoidance, and attack pattern mechanisms in modern web application vulnerabilities: Present and future challenges. International Journal of Cloud Applications and Computing, 7(3), 1–43.

    Article  Google Scholar 

  8. Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor BIG Data collection–processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349–357.

    Article  Google Scholar 

  9. Gupta, B. B., Gupta, S., & Chaudhary, P. (2017). Enhancing the browser-side context-aware sanitization of suspicious HTML5 code for halting the DOM-based XSS vulnerabilities in cloud. International Journal of Cloud Applications and Computing, 7(1), 1–31.

    Article  Google Scholar 

  10. Hossain, M. S., Muhammad, G., Abdul, W., Song, B., & Gupta, B. B. (2018). Cloud-assisted secure video transmission and sharing framework for smart cities. Future Generation Computer Systems, 83, 596–606.

    Article  Google Scholar 

  11. Bruss, D. (1998). Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters, 81(14), 3018–3021

    Article  Google Scholar 

  12. Scarani, V., Acin, A., Ribordy, G., & Gisin, N. (2004). Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Physical Review Letters, 92, 057901.

    Article  Google Scholar 

  13. Qi, B., Fung, C.-H. F, Lo, H.-K., & Ma, X. (2007). Time-shift attack in practical quantum cryptosystems. Quantum Information and Computation, 7, 73–82.

    MathSciNet  MATH  Google Scholar 

  14. Amellal, H., Meslouhi, A., Hassouni, Y., El Baz, M., & El Allati, A. (2017). Cryptanalysis on a scheme to share information via employing discrete algorithm to quantum states. Journal of the Korean Physical Society, 70, 449–453. https://doi.org/10.3938/jkps.70.449

    Article  Google Scholar 

  15. Amellal, H., Meslouhi, A., Hassouni, Y., & El Allati, A. (2017). SQL injection principle against BB84 protocol. International Journal of Computers and Communications, 11. ISSN: 2074-1294.

    Google Scholar 

  16. Dirac, P. A. M. (1947). The principles of quantum mechanics (3rd ed.). Oxford: Clarendon Press.

    MATH  Google Scholar 

  17. Dieks, D. (1982). Communication by EPR devices. Physics Letters A, 92(6), 271–272.

    Article  Google Scholar 

  18. Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H., & Weinfurter, H. (2009). Information leakage via side channels in freespace BB84 quantum cryptography. New Journal of Physics, 11, 065001.

    Article  Google Scholar 

  19. Dirac, P. A. M. (1947). The principles of quantum mechanics (3rd ed.). Oxford: Clarendon Press.

    MATH  Google Scholar 

  20. Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299, 802–803. https://doi.org/10.1038/299802a0

    Article  Google Scholar 

  21. Lamas-Linares, A., & Kurtsiefer, C. (2007). Breaking a quantum key distribution system through a timing side channel. Optics Express, 15, 9388393.

    Article  Google Scholar 

  22. Lütkenhaus, N. (2000). Security against individual attacks for realistic quantum key distribution. Physics Letters A, 61, 052304.

    Google Scholar 

  23. Makarov, V., & Hjelme, D. R. (2005). Faked states attack on quantum cryptosystems. Journal of Modern Optics, 52, 69105.

    Article  Google Scholar 

  24. Makarov, V. (2009). Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 11, 065003.

    Article  Google Scholar 

  25. Makarov, V., & Skaar, J. (2008). Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK and Ekert protocols. Quantum Information and Computation, 8(67), 92–93.

    MATH  Google Scholar 

  26. Makarov, V., Anisimov, A., & Skaar, J. (2006). Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A, 74, 022313.

    Article  Google Scholar 

  27. Scarani, V., Acin, A., Ribordy, G., & Gisin, N. (2004). Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Physical Review Letters, 92, 057901.

    Article  Google Scholar 

  28. Bennett, C. H., & Brassard, G. (1984). Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (pp. 71, 79, 92). New York: IEEE Press.

    Google Scholar 

  29. Zhao, Y., Fung, C.-H. F., Qi, B., Chen, C., & Lo, H.-K. (2008). Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 78, 042333.

    Article  Google Scholar 

  30. Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H., & Weinfurter, H. (2009). Information leakage via side channels in freespace BB84 quantum cryptography. New Journal of Physics, 11, 065001.

    Article  Google Scholar 

  31. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4, 686–689. https://doi.org/10.1038/nphoton.2010.214

    Article  Google Scholar 

  32. El Allati, A., El Baz, M., & Hassouni, Y. (2011). Quantum key distribution via tripartite coherent states. Quantum Information Processing, 10, 5589–5602.

    Article  MathSciNet  Google Scholar 

  33. Eleuch, H., & Bennaceur, R. (2004). Nonlinear dissipation and the quantum noise of light in semiconductor microcavities. Journal of Optics B: Quantum and Semiclassical Optics, 6, 189.

    Article  Google Scholar 

  34. Curado, E. M. F., Rego-Monteiro, M. A., Rodrigues, L. M. C. S., & Hassouni, Y. (2006). Coherent states for a degenerate system: The hydrogen atom. Physica A, 371, 16.

    Article  Google Scholar 

  35. Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Physical Review, 131, 2766 (1963).

    Article  MathSciNet  Google Scholar 

  36. Ekert, A. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661–663.

    Article  MathSciNet  Google Scholar 

  37. Greenberger, D., Horne, M. A., & Zeilinger, A. (1989). Going beyond Bell’s theorem. In M. Kafatos (Ed.), Bell’s theorem, quantum theory and conceptions of the universe (Vol. 80, pp. 69–72). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  38. Li, C., Wang, Z., Wu, C., Song, H. S., & Zhou, L. (2006). Certain quantum key distribution achieved by using Bell states. International Journal of Quantum Information, 4(6), 899–906.

    Article  Google Scholar 

  39. Bennett, C. H. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68, 3121.

    Article  MathSciNet  Google Scholar 

  40. Amellal, H., Meslouhiy, A., Hassouni, Y., & El Baz, M. (2015). A quantum optical firewall based on simple quantum devices. Quantum Information Processing, 14, 2617–2633. https://doi.org/10.1007/s11128-015-1002-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amellal, H., Meslouhi, A., Allati, A.E., Haddadi, A.E. (2020). QKD Protocols Security Between Theory and Engineering Implementation. In: Gupta, B., Perez, G., Agrawal, D., Gupta, D. (eds) Handbook of Computer Networks and Cyber Security. Springer, Cham. https://doi.org/10.1007/978-3-030-22277-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22277-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22276-5

  • Online ISBN: 978-3-030-22277-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics