Skip to main content

Requirements, Protocols, and Security Challenges in Wireless Sensor Networks: An Industrial Perspective

  • Chapter
  • First Online:
Handbook of Computer Networks and Cyber Security

Abstract

Wireless sensor networks (WSNs) have several application areas that also include the industrial automation systems where they are used for monitoring and controlling the industrial equipment. However, requirements in industrial wireless systems are different from general WSN requirements. Industries are benefitted a big deal by integration of sensors in industrial machinery, plants, shop floors, structures, and other critical places. This application of WSNs in industrial domain lowers the failure rates and improves the productivity as well as efficiency of the factory operations. Adequate security needs to be provided along with ensured reliability for integrating the wireless technology with the industrial domain. Industrial wireless sensor networks (IWSNs) are vulnerable to huge range of attacks owing to its hostile deployment location, open architecture, and insecure routing protocols. As sensors are resource constrained in terms of limited processing capabilities, constrained energy, short communication range, and storage capacity, WSNs become easy target for the adversary ensuring adequate security in the crucial services provided by WSNs reinforce its acceptability as a dependable and viable technology in the industrial and factory domain. In this chapter, the characteristic features of WSNs in factory automation are outlined along with the industrial application of WSNs. This chapter addresses several standards defined by various industrial alliances in the past few years. Then several reliability issues in industrial WSNs are explored along with various types of security attacks possible in IWSNs. It explores several security paradigms applicable for industrial wireless sensor networks. This chapter then presents a broader view toward WSN solutions and discusses important functions like medium access control (MAC). Some important design considerations for designing MAC protocols are also presented in this chapter. Finally, the chapter concludes with several open research topics and unsolved challenges that were encountered during the protocol design for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Low, K. S., Win, W. N. N., & Meng, E. (2005). Wireless sensor networks for industrial environments. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06) (Vol. 2, pp. 271–276). https://doi.org/10.1109/CIMCA.2005.1631480.

    Chapter  Google Scholar 

  2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422. https://doi.org/10.1016/s1389-1286(01)00302-4.

    Article  Google Scholar 

  3. Gutierrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gandara, M. A. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63(1), 166–176. https://doi.org/10.1109/tim.2013.2276487.

    Article  Google Scholar 

  4. Jan, N., Ondrej, K., & Radislav, S. (2014). A distributed fault detection system based on IWSN for machine condition monitoring. IEEE Transactions on Industrial Informatics, 10, 1118–1123. https://doi.org/10.1109/TII.2013.2290432.

    Article  Google Scholar 

  5. Zafar, I., Heung-No, L., & Saeid, N. (2018). Highly reliable decision-making using reliability factor feedback for factory condition monitoring via WSNs. Wireless Communications and Mobile Computing, 2018, 1–9. https://doi.org/10.1155/2018/8058624.

    Article  Google Scholar 

  6. Stergiou, C., Psannis, K. E., Kim, B., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation Computer Systems, 78, 964–975. https://doi.org/10.1016/j.future.2016.11.031.

    Article  Google Scholar 

  7. Hackmann, G., Guo, W., Yan, G., Lu, C., & Dyke, S. (2010). Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems – ICCPS 10. https://doi.org/10.1145/1795194.1795211.

    Chapter  Google Scholar 

  8. Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735. https://doi.org/10.1109/twc.2017.2658601.

    Article  Google Scholar 

  9. Stergiou, C., & Psannis, K. (2017). Efficient and secure BIG data delivery in Cloud Computing. Multimedia Tools and Applications, 76(21), 22803–22822. https://doi.org/10.1007/s11042-017-4590-4.

    Article  Google Scholar 

  10. Wang, C., Li, J., Ye, F., & Yang, Y. (2016). A mobile data gathering framework for wireless rechargeable sensor networks with vehicle movement costs and capacity constraints. IEEE Transactions on Computers, 65(8), 2411–2427. https://doi.org/10.1109/tc.2015.2490060.

    Article  MathSciNet  MATH  Google Scholar 

  11. Tsang, K. F., Gidlund, M., & Åkerberg, J. (2016). Guest editorial industrial wireless networks: Applications, challenges, and future directions. IEEE Transactions on Industrial Informatics, 12(2), 755–757.

    Article  Google Scholar 

  12. Guck, J. W., Reisslein, M., & Kellerer, W. (2016). Function split between delay-constrained routing and resource allocation for centrally managed QoS in industrial networks. IEEE Transactions on Industrial Informatics, 12(6), 2050–2061. https://doi.org/10.1109/tii.2016.2592481.

    Article  Google Scholar 

  13. Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M., Kushalnagar, N., et al. (2005). Design and deployment of industrial sensor networks. In Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems – SenSys 05. https://doi.org/10.1145/1098918.1098926.

    Chapter  Google Scholar 

  14. Tanwar, S., Kumar, N., & Rodrigues, J. J. (2015). A systematic review on heterogeneous routing protocols for wireless sensor network. Journal of Network and Computer Applications, 53, 39–56. https://doi.org/10.1016/j.jnca.2015.03.004.

    Article  Google Scholar 

  15. Begum, K., & Dixit, S. (2016, March). Industrial WSN using IoT: A survey. In International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 499–504). Piscataway: IEEE.

    Chapter  Google Scholar 

  16. Gupta, B. B., & Quamara, M. (2018, October). A dynamic security policies generation model for access control in smart card based applications. In International Symposium on Cyberspace Safety and Security (pp. 132–143). Cham: Springer.

    Chapter  Google Scholar 

  17. Christos, S., Kostas, P., Andreas, P., Yutaka, I., & Byung-Gyu, K. (2018). Algorithms for efficient digital media transmission over IoT and cloud networking. The Journal of Multimedia Information System, 5(1), 27–34.

    Google Scholar 

  18. Plageras, A., Psannis, K., Stergiou, C., Wang, H., & Gupta, B. B. (2017). Efficient IoT-based sensor BIG data collection-processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349–357. https://doi.org/10.1016/j.future.2017.09.082.

    Article  Google Scholar 

  19. Lin, X., Huang, L., Guo, C., Zhang, P., Huang, M., & Zhang, J. (2016). Energy-efficient resource allocation in TDMS based wireless powered communication networks. IEEE Communications Letters, 21, 1. https://doi.org/10.1109/lcomm.2016.2639484.

    Article  Google Scholar 

  20. Hoang, T. M., Duong, Q., Vo, N.-S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177. https://doi.org/10.1109/LWC.2017.2650224.

    Article  Google Scholar 

  21. Hitesh, S., Ravinder, K., Boncho, B., & Peter, P. (2017). Cloud attenuation issues in satellite communications at millimeter frequency bands-state of art. International Journal of Scientific and Engineering Research, 8, 851–857.

    Google Scholar 

  22. Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104(9), 1727–1765. https://doi.org/10.1109/jproc.2016.2558521.

    Article  Google Scholar 

  23. Bhushan, B., & Sahoo, G. (2017). Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Personal Communications, 98(2), 2037–2077. https://doi.org/10.1007/s11277-017-4962-0.

    Article  Google Scholar 

  24. Zhao, F., & Guibas, L. (2004). Wireless sensor networks: An information processing approach. Amsterdam: Elsevier.

    Google Scholar 

  25. Kevan, T. (2005). Upgrading a steel mill – Wirelessly. Wireless Sensors, 22, 3–6.

    Google Scholar 

  26. Kevan, T. (2006). Shipboard machine monitoring for predictive maintenance. In Wireless sensors magazine.

    Google Scholar 

  27. Sundararajan, V., Andrew, R., William, W., & Paul, W. (2004). Distributed monitoring of steady-state system performance using wireless sensor networks (p. 15). California: American Society of Mechanical Engineers, Manufacturing Engineering Division, MED. https://doi.org/10.1115/IMECE2004-59884.

    Book  Google Scholar 

  28. Ramamurthy, H., Prabhu, B. S., Gadh, R., & Madni, A. (2005). Smart sensor platform for industrial monitoring and control. In Sensores (p. 4). Irvine: IEEE. https://doi.org/10.1109/ICSENS.2005.1597900.

    Chapter  Google Scholar 

  29. Muhammad, R., Jaharah, G., Mohd, N., & Haron, C. (2014). A review of sensor system and application in milling process for tool condition monitoring. Research Journal of Applied Sciences, Engineering and Technology, 7, 2083–2097. https://doi.org/10.19026/rjaset.7.502.

    Article  Google Scholar 

  30. Kunert, K., Jonsson, M., & Uhlemann, E. (2010). Exploiting time and frequency diversity in IEEE 802.15.4 industrial networks for enhanced reliability and throughput. In 2010 IEEE 15th Conference on Emerging Technologies and Factory Automation (ETFA 2010). https://doi.org/10.1109/etfa.2010.5641347.

    Chapter  Google Scholar 

  31. Miśkowicz, M., & Kościelnik, D. (2010). Modeling end-to-end reliability in best-effort networked embedded systems. In 2010 IEEE 15th Conference on Emerging Technologies and Factory Automation (ETFA 2010). https://doi.org/10.1109/etfa.2010.5641118.

    Chapter  Google Scholar 

  32. Park, P., Fischione, C., Bonivento, A., Johansson, K. H., & Sangiovanni-Vincent, A. (2011). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Transactions on Mobile Computing, 10(6), 821–838. https://doi.org/10.1109/ tmc.2010.223.

    Article  Google Scholar 

  33. Zand, P., Chatterjea, S., Das, K., & Havinga, P. (2012). Wireless industrial monitoring and control networks: The journey so far and the road ahead. Journal of Sensor and Actuator Networks, 1, 123–152. https://doi.org/10.3390/jsan1020123.

    Article  Google Scholar 

  34. Zheng, L. (2010). Industrial wireless sensor networks and standardizations: The trend of wireless sensor networks for process automation. In Proceedings of SICE Annual Conference 2010 (pp. 1187–1190). Piscataway: IEEE.

    Google Scholar 

  35. Akyildiz, I., & Kasimoglu, I. (2004). A protocol suite for wireless sensor and actor networks. In Proceedings of 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746). https://doi.org/10.1109/rawcon.2004.1389058.

    Chapter  Google Scholar 

  36. Rabaey, J., Ammer, M., Silva, J. D., Patel, D., & Roundy, S. (2000). PicoRadio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42–48. https://doi.org/10.1109/2.869369.

    Article  Google Scholar 

  37. Willig, A., Matheus, K., & Wolisz, A. (2005). Wireless technology in industrial networks. Proceedings of the IEEE, 93(6), 1130–1151. https://doi.org/10.1109/jproc.2005.849717.

    Article  Google Scholar 

  38. Dazhi, C., & Varshney, P. K. (2004). QoS support in wireless sensor networks: A survey. In Proceedings of the International Conference on Wireless Networks, ICWN’04 (Vol. 1, pp. 227–233).

    Google Scholar 

  39. Gungor, V., & Hancke, G. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 56(10), 4258–4265. https://doi.org/10.1109/tie.2009.2015754.

    Article  Google Scholar 

  40. Ramon, S. O., & Gerhard, F. (2010). Timeliness in wireless sensor networks: Common misconceptions. In Proceedings of the 9th International Workshop on Real-Time Networks RTN.

    Google Scholar 

  41. Imran, M., Said, A. M., & Hasbullah, H. (2010). A survey of simulators, emulators and testbeds for wireless sensor networks. In 2010 International Symposium on Information Technology. https://doi.org/10.1109/itsim.2010.5561571.

    Chapter  Google Scholar 

  42. Halkes, G., & Langendoen, K. (2009). Experimental evaluation of simulation abstractions for wireless sensor network MAC protocols. In 2009 IEEE 14th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks. https://doi.org/10.1109/camad.2009.5161468.

    Chapter  Google Scholar 

  43. Li, H., & Savkin, A. V. (2018). Wireless sensor network based navigation of micro flying robots in the industrial internet of things. IEEE Transactions on Industrial Informatics, 14(8), 3524–3533. https://doi.org/10.1109/tii.2018.2825225.

    Article  Google Scholar 

  44. Sinha, P., Jha, V. K., Rai, A. K., & Bhushan, B. (2017). Security vulnerabilities, attacks and countermeasures in wireless sensor networks at various layers of OSI reference model: A survey. In 2017 International Conference on Signal Processing and Communication (ICSPC). https://doi.org/10.1109/cspc.2017.8305855h.

    Chapter  Google Scholar 

  45. Nikoletseas, S., Yang, Y., & Apostolos, G. (2016). Wireless power transfer algorithms, technologies and applications in ad hoc communication networks. Cham: Springer. https://doi.org/10.1007/978-3-319-46810-5.

    Book  Google Scholar 

  46. Nurul, F., Samsul, H., Eko, P., Udin, A. R., Choirur, R., & Unggul Pamenang, M. (2017). A prototype of monitoring precision agriculture system based on WSN. In 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 323–328). Piscataway: IEEE. https://doi.org/10.1109/ISITIA.2017.8124103.

    Chapter  Google Scholar 

  47. Nelofar, A., Kewen, X., Ahmad, A., & Saleem, U. (2017). Adaptive TCP-ICCW congestion control mechanism for QoS in renewable wireless sensor networks. IEEE Sensors Letters, 1, 1. https://doi.org/10.1109/LSENS.2017.2758822.

    Article  Google Scholar 

  48. Bayindir, R., & Yucel, C. (2010). A water pumping control system with a Programmable Logic Controller (PLC) and industrial wireless modules for industrial plants—An experimental setup. ISA Transactions, 50, 321–328. https://doi.org/10.1016/j.isatra.2010.10.006.

    Article  Google Scholar 

  49. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11), 4724–4734. https://doi.org/10.1109/tii.2018.2852491.

    Article  Google Scholar 

  50. Alliance, Z. (2008). Zigbee specification (document 053474r17). Luettu. 21.

    Google Scholar 

  51. I. W. W. Group. (2008, May). Draft standard ISA100. 11a. In Internal working draft. North Carolina: International Society of Automation.

    Google Scholar 

  52. Kristofer, P., & Lance, D. (2008). TSMP: Time synchronized mesh protocol. In IASTED International Symposium on Distributed Sensor Networks, DSN 2008.

    Google Scholar 

  53. O’Donovan, T., Brown, J., Roedig, U., Sreenan, C., Adam, D., Klein, A., Sá Silva, J., Vassiliou, V., & Wolf, L. (2010). GINSENG: Performance control in wireless sensor networks. In 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (pp. 1–3). https://doi.org/10.1109/SECON.2010.5508206.

    Chapter  Google Scholar 

  54. Petcharat, S., James, B., & Utz, R. (2010). Time-critical data delivery in wireless sensor networks. In International Conference on Distributed Computing in Sensor Systems (pp. 216–229). Berlin: Springer. https://doi.org/10.1007/978-3-642-13651-1_16.

    Chapter  Google Scholar 

  55. Büsching, F., Pöttner, W.-B., Brökelmann, D., von Zengen, G., Hartung, R., Hinz, K., & Wolf, L. (2012). A demonstrator of the GINSENG-approach to performance and closed loop control in WSNs. In Ninth International Conference on Networked Sensing Systems (INSS). https://doi.org/10.1109/INSS.2012.6240572.

    Chapter  Google Scholar 

  56. Stig, P., & Simon, C. (2011). WirelessHART versus ISA100.11a: The format war hits the factory floor. IEEE Industrial Electronics Magazine, 5, 23–34. https://doi.org/10.1109/MIE.2011.943023.

    Article  Google Scholar 

  57. Duan, Y., Li, W., Fu, X., Luo, Y., & Yang, L. (2018). A methodology for reliability of WSN based on software defined network in adaptive industrial environment. IEEE/CAA Journal of Automatica Sinica, 5(1), 74–82. https://doi.org/10.1109/jas.2017.7510751.

    Article  Google Scholar 

  58. Taylor, J., & Sayda, A. (2005). An intelligent architecture for integrated control and asset management for industrial processes. In Proceedings of the 2005 IEEE International Symposium On, Mediterranean Conference on Control and Automation Intelligent Control, 2005. https://doi.org/10.1109/.2005.1467219.

    Chapter  Google Scholar 

  59. Zhao, G. (2011). Wireless sensor networks for industrial process monitoring and control: A survey. Network Protocols and Algorithms, 3, 43–63. https://doi.org/10.5296/npa.v3i1.580.

    Article  Google Scholar 

  60. Bhushan, B., & Sahoo, G. (2018). Routing protocols in wireless sensor networks. In Computational Intelligence in Sensor Networks Studies in Computational Intelligence (pp. 215–248). Berlin: Springer. https://doi.org/10.1007/978-3-662-57277-1_10.

    Chapter  Google Scholar 

  61. Thai, J., Yuan, C., & Bayen, A. M. (2018). Resiliency of mobility-as-a-service systems to denial-of-service attacks. IEEE Transactions on Control of Network Systems, 5(1), 370–382. https://doi.org/10.1109/tcns.2016.2612828.

    Article  MathSciNet  MATH  Google Scholar 

  62. Kumar, R., Chandra, P., & Hanmandlu, M. (2016). A robust fingerprint matching system using orientation features. Journal of Information Processing Systems, 121, 83–99.

    Google Scholar 

  63. Tomic, I., & Mccann, J. A. (2017). A survey of potential security issues in existing wireless sensor network protocols. IEEE Internet of Things Journal, 4(6), 1910–1923. https://doi.org/10.1109/jiot.2017.2749883.

    Article  Google Scholar 

  64. Kumar, R., Hanmandlu, M., & Chandra, P. (2014). An empirical evaluation of rotation invariance of LDP feature for fingerprint matching using neural networks. International Journal of Computational Vision and Robotics, 4(4), 330–348.

    Article  Google Scholar 

  65. Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access, 5, 5313–5320. https://doi.org/10.1109/access.2017.2691003.

    Article  Google Scholar 

  66. Pu, C., & Lim, S. (2018). A light-weight countermeasure to forwarding misbehavior in wireless sensor networks: Design, analysis, and evaluation. IEEE Systems Journal, 12(1), 834–842. https://doi.org/10.1109/jsyst.2016.2535730.

    Article  Google Scholar 

  67. Wang, G., Wang, B., Wang, T., Nika, A., Zheng, H., & Zhao, B. Y. (2018). Ghost riders: Sybil attacks on crowdsourced mobile mapping services. IEEE/ACM Transactions on Networking, 26(3), 1123–1136. https://doi.org/10.1109/tnet.2018.2818073.

    Article  Google Scholar 

  68. Ripudaman, S., Brijesh, R., & Sanjay, B. (2017). A low delay cross-layer MAC protocol for k-covered event driven wireless sensor networks. IEEE Sensors Letters, 1, 1–4. https://doi.org/10.1109/LSENS.2017.2776303.

    Article  Google Scholar 

  69. Fatima, Z. D., & Djamel, D. (2016). MAC protocols with wake-up radio for wireless sensor networks: A review. IEEE Communications Surveys and Tutorials, 19, 587–618. https://doi.org/10.1109/ COMST.2016.2612644.

    Article  Google Scholar 

  70. Liu, J., Li, M., Yuan, B., & Liu, W. (2015). A novel energy efficient MAC protocol for wireless body area network. Communications China, 12, 11–20. https://doi.org/10. 1109/CC.2015.7084398.

    Article  Google Scholar 

  71. Chi-Han, L., Ching-Ju, L. K., & Chen, W.-T. (2017). Channel-aware polling-based MAC protocol for body area networks: Design and analysis. IEEE Sensors Journal, 17(9), 2936–2948. https://doi.org/10.1109/JSEN.2017.2669526.

    Article  Google Scholar 

  72. Solic, P., Radic, J., & Rozic, N. (2016). Early frame break policy for ALOHA-based RFID systems. IEEE Transactions on Automation Science and Engineering, 13(2), 876–881. https://doi.org/10.1109/tase.2015.2408372.

    Article  Google Scholar 

  73. Rhee, I., Warrier, A., Aia, M., Min, J., & Sichitiu, M. (2008). Z-MAC: A hybrid MAC for wireless sensor networks. IEEE/ACM Transactions on Networking, 16(3), 511–524. https://doi.org/10.1109/tnet.2007.900704.

    Article  Google Scholar 

  74. Hannachi, A., & Bachir, A. (2017). Distributed cell scheduling for multichannel IoT MAC protocols. In 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). https://doi.org/10.1109/iwcmc.2017.7986450.

    Chapter  Google Scholar 

  75. Nguyen, V., Oo, T. Z., Chuan, P., & Hong, C. S. (2016). An efficient time slot acquisition on the hybrid TDMA/CSMA multichannel MAC in VANETs. IEEE Communications Letters, 20(5), 970–973. https://doi.org/10.1109/lcomm.2016.2536672.

    Article  Google Scholar 

  76. Chingoska, H., Hadzi-Velkov, Z., Nikoloska, I., & Zlatanov, N. (2016). Resource allocation in wireless powered communication networks with non-orthogonal multiple access. IEEE Wireless Communications Letters, 5(6), 684–687. https://doi.org/10.1109/lwc.2016.2615616.

    Article  Google Scholar 

  77. Kim, J., Lee, H., Song, C., Oh, T., & Lee, I. (2017). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Wireless Communications, 16(2), 913–923. https://doi.org/10.1109/twc.2016.2633471.

    Article  Google Scholar 

  78. Kurt, S., & Tavli, B. (2017). Path-loss modeling for wireless sensor networks: A review of models and comparative evaluations. IEEE Antennas and Propagation Magazine, 59(1), 18–37. https://doi.org/10.1109/map.2016.2630035.

    Article  Google Scholar 

  79. Kumar, R. (2017). Hand image biometric based personal authentication system. In Intelligent techniques in signal processing for multimedia security (pp. 201–226). Cham: Springer.

    Chapter  Google Scholar 

  80. Kulkarni, S. (2004). TDMA service for sensor networks. In Proceedings of 24th International Conference on Distributed Computing Systems Workshops, 2004 (pp. 604–609). https://doi.org/10.1109/ICDCSW.2004.1284094.

    Chapter  Google Scholar 

  81. Singh, R., Rai, B. K., & Bose, S. K. (2017). A low delay cross-layer MAC protocol for k-covered event driven wireless sensor networks. IEEE Sensors Letters, 1(6), 1–4. https://doi.org/10.1109/lsens.2017.2776303.

    Article  Google Scholar 

  82. Siddiqui, S., Ghani, S., & Khan, A. A. (2018). ADP-MAC: An adaptive and dynamic polling-based MAC protocol for wireless sensor networks. IEEE Sensors Journal, 18(2), 860–874. https://doi.org/10.1109/jsen.2017.2771397.

    Article  Google Scholar 

  83. Kumar, A., Zhao, M., Wong, K., Guan, Y. L., & Chong, P. H. (2018). A comprehensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities. IEEE Access, 6, 76228–76262. https://doi.org/10.1109/access.2018.2883391.

    Article  Google Scholar 

  84. Hu, Y., Gao, A., Xu, T., & Li, L. (2017). Cascade self-tuning control architecture for QoS-aware MAC in WSN. IET Wireless Sensor Systems, 7(5), 146–154. https://doi.org/10.1049/ iet-wss.2016.0092.

    Article  Google Scholar 

  85. Ergen, S., & Varaiya, P. (2006). PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Transactions on Mobile Computing, 5(7), 920–930. https://doi.org/10.1109/tmc.2006.100.

    Article  Google Scholar 

  86. Sitanayah, L., Sreenan, C. J., & Brown, K. N. (2010). ER-MAC: A hybrid MAC protocol for emergency response wireless sensor networks. In 2010 Fourth International Conference on Sensor Technologies and Applications. https://doi.org/10.1109/sensorcomm.2010.45.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B., Sahoo, G. (2020). Requirements, Protocols, and Security Challenges in Wireless Sensor Networks: An Industrial Perspective. In: Gupta, B., Perez, G., Agrawal, D., Gupta, D. (eds) Handbook of Computer Networks and Cyber Security. Springer, Cham. https://doi.org/10.1007/978-3-030-22277-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22277-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22276-5

  • Online ISBN: 978-3-030-22277-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics