Skip to main content

Anti-interferon-γ Therapy for Cytokine Storm Syndromes

  • Chapter
  • First Online:
Cytokine Storm Syndrome
  • 1542 Accesses

Abstract

A vast body of evidence provides support to a central role of exaggerated production of interferon-γ (IFN-γ) in causing hypercytokinemia and signs and symptoms of hemophagocytic lymphohistiocytosis (HLH). In this chapter, we describe briefly the roles of IFN-γ in innate and adaptive immunity and in host defense, summarize results from animal models of primary HLH and secondary HLH with a particular emphasis on targeted therapeutic approaches, review data on biomarkers associated with activation of the IFN-γ pathway, and discuss initial efficacy and safety results of IFN-γ neutralization in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivashkiv, L. B. (2018). IFNgamma: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nature Reviews. Immunology, 18, 545–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology, 96, 41–101.

    Article  CAS  PubMed  Google Scholar 

  3. Blouin, C. M., & Lamaze, C. (2013). Interferon gamma receptor: The beginning of the journey. Frontiers in Immunology, 4, 267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. de Weerd, N. A., & Nguyen, T. (2012). The interferons and their receptors—Distribution and regulation. Immunology and Cell Biology, 90, 483–491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Suarez-Ramirez, J. E., Tarrio, M. L., Kim, K., Demers, D. A., & Biron, C. A. (2014). CD8 T cells in innate immune responses: Using STAT4-dependent but antigen-independent pathways to gamma interferon during viral infection. MBio, 5, e01978–e01914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kannan, Y., Yu, J., Raices, R. M., Seshadri, S., Wei, M., Caligiuri, M. A., et al. (2011). IkappaBzeta augments IL-12- and IL-18-mediated IFN-gamma production in human NK cells. Blood, 117, 2855–2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Majoros, A., Platanitis, E., Kernbauer-Holzl, E., Rosebrock, F., Muller, M., & Decker, T. (2017). Canonical and non-canonical aspects of JAK-STAT signaling: Lessons from interferons for cytokine responses. Frontiers in Immunology, 8, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Xie, C., Liu, C., Wu, B., Lin, Y., Ma, T., Xiong, H., et al. (2016). Effects of IRF1 and IFN-beta interaction on the M1 polarization of macrophages and its antitumor function. International Journal of Molecular Medicine, 38, 148–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chistiakov, D. A., Myasoedova, V. A., Revin, V. V., Orekhov, A. N., & Bobryshev, Y. V. (2018). The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology, 223, 101–111.

    Article  CAS  PubMed  Google Scholar 

  10. Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. The Journal of Clinical Investigation, 122, 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asano, M., Nakane, A., & Minagawa, T. (1993). Endogenous gamma interferon is essential in granuloma formation induced by glycolipid-containing mycolic acid in mice. Infection and Immunity, 61, 2872–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Green, D. S., Young, H. A., & Valencia, J. C. (2017). Current prospects of type II interferon gamma signaling and autoimmunity. The Journal of Biological Chemistry, 292, 13925–13933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pearl, J. E., Saunders, B., Ehlers, S., Orme, I. M., & Cooper, A. M. (2001). Inflammation and lymphocyte activation during mycobacterial infection in the interferon-gamma-deficient mouse. Cellular Immunology, 211, 43–50.

    Article  CAS  PubMed  Google Scholar 

  14. Swindle, E. J., Brown, J. M., Radinger, M., DeLeo, F. R., & Metcalfe, D. D. (2015). Interferon-gamma enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus. Immunology, 146, 470–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, J., Kim, S. T., & Craft, J. (2012). The pathogenesis of systemic lupus erythematosus-an update. Current Opinion in Immunology, 24, 651–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schroder, K., Hertzog, P. J., Ravasi, T., & Hume, D. A. (2004). Interferon-gamma: An overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 75, 163–189.

    Article  CAS  PubMed  Google Scholar 

  17. Fidan, I., Yesilyurt, E., Gurelik, F. C., Erdal, B., & Imir, T. (2008). Effects of recombinant interferon-gamma on cytokine secretion from monocyte-derived macrophages infected with Salmonella typhi. Comparative Immunology, Microbiology and Infectious Diseases, 31, 467–475.

    Article  PubMed  Google Scholar 

  18. Bao, S., Beagley, K. W., France, M. P., Shen, J., & Husband, A. J. (2000). Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology, 99, 464–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van de Berg, P. J., Heutinck, K. M., Raabe, R., Minnee, R. C., Young, S. L., van Donselaar-van der Pant, K. A., et al. (2010). Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. The Journal of Infectious Diseases, 202, 690–699.

    Article  PubMed  CAS  Google Scholar 

  20. Sainz Jr., B., LaMarca, H. L., Garry, R. F., & Morris, C. A. (2005). Synergistic inhibition of human cytomegalovirus replication by interferon-alpha/beta and interferon-gamma. Virology Journal, 2, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Brisse, E., Imbrechts, M., Put, K., Avau, A., Mitera, T., Berghmans, N., et al. (2016). Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 3124–3134.

    Article  CAS  Google Scholar 

  22. Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A., & Bloom, B. R. (1993). An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. The Journal of Experimental Medicine, 178, 2249–2254.

    Article  CAS  PubMed  Google Scholar 

  23. Salat, J., Sak, B., Le, T., & Kopecky, J. (2004). Susceptibility of IFN-gamma or IL-12 knock-out and SCID mice to infection with two microsporidian species, Encephalitozoon cuniculi and E. intestinalis. Folia Parasitologica, 51, 275–282.

    Article  CAS  PubMed  Google Scholar 

  24. Dorman, S. E., Uzel, G., Roesler, J., Bradley, J. S., Bastian, J., Billman, G., et al. (1999). Viral infections in interferon-gamma receptor deficiency. The Journal of Pediatrics, 135, 640–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Remus, N., Reichenbach, J., Picard, C., Rietschel, C., Wood, P., Lammas, D., et al. (2001). Impaired interferon gamma-mediated immunity and susceptibility to mycobacterial infection in childhood. Pediatric Research, 50, 8–13.

    Article  CAS  PubMed  Google Scholar 

  26. Tran, D. Q. (2005). Susceptibility to mycobacterial infections due to interferon-gamma and interleukin-12 pathway defects. Allergy and Asthma Proceedings, 26, 418–421.

    CAS  PubMed  Google Scholar 

  27. Sologuren, I., Boisson-Dupuis, S., Pestano, J., Vincent, Q. B., Fernandez-Perez, L., Chapgier, A., et al. (2011). Partial recessive IFN-gammaR1 deficiency: Genetic, immunological and clinical features of 14 patients from 11 kindreds. Human Molecular Genetics, 20, 1509–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lammas, D. A., Casanova, J. L., & Kumararatne, D. S. (2000). Clinical consequences of defects in the IL-12-dependent interferon-gamma (IFN-gamma) pathway. Clinical and Experimental Immunology, 121, 417–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kampmann, B., Hemingway, C., Stephens, A., Davidson, R., Goodsall, A., Anderson, S., et al. (2005). Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-gamma. The Journal of Clinical Investigation, 115, 2480–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wongkulab, P., Wipasa, J., Chaiwarith, R., & Supparatpinyo, K. (2013). Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. PLoS One, 8, e76371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zoller, E. E., Lykens, J. E., Terrell, C. E., Aliberti, J., Filipovich, A. H., Henson, P. M., et al. (2011). Hemophagocytosis causes a consumptive anemia of inflammation. The Journal of Experimental Medicine, 208, 1203–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Behrens, E. M., Canna, S. W., Slade, K., Rao, S., Kreiger, P. A., Paessler, M., et al. (2011). Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. The Journal of Clinical Investigation, 121, 2264–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crozat, K., Hoebe, K., Ugolini, S., Hong, N. A., Janssen, E., Rutschmann, S., et al. (2007). Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: A mouse model of type 3 familial hemophagocytic lymphohistiocytosis. The Journal of Experimental Medicine, 204, 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Czar, M. J., Kersh, E. N., Mijares, L. A., Lanier, G., Lewis, J., Yap, G., et al. (2001). Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proceedings of the National Academy of Sciences of the United States of America, 98, 7449–7454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kogl, T., Muller, J., Jessen, B., Schmitt-Graeff, A., Janka, G., Ehl, S., et al. (2013). Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood, 121, 604–613.

    Article  CAS  PubMed  Google Scholar 

  36. Pachlopnik Schmid, J., Ho, C. H., Chretien, F., Lefebvre, J. M., Pivert, G., Kosco-Vilbois, M., et al. (2009). Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Molecular Medicine, 1, 112–124.

    Article  CAS  PubMed  Google Scholar 

  37. Prencipe, G., Caiello, I., Pascarella, A., Grom, A. A., Bracaglia, C., Chatel, L., et al. (2018). Neutralization of IFN-gamma reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. The Journal of Allergy and Clinical Immunology, 141, 1439–1449.

    Article  CAS  PubMed  Google Scholar 

  38. Jordan, M. B., Hildeman, D., Kappler, J., & Marrack, P. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 104, 735–743.

    Article  CAS  PubMed  Google Scholar 

  39. Buatois, V., Chatel, L., Cons, L., Lory, S., Richard, F., Guilhot, F., et al. (2017). Use of a mouse model to identify a blood biomarker for IFNgamma activity in pediatric secondary hemophagocytic lymphohistiocytosis. Translational Research, 180, 37–52 e32.

    Article  CAS  PubMed  Google Scholar 

  40. de Benedetti, F., Massa, M., Robbioni, P., Ravelli, A., Burgio, G. R., & Martini, A. (1991). Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis and Rheumatism, 34, 1158–1163.

    Article  PubMed  Google Scholar 

  41. Strippoli, R., Carvello, F., Scianaro, R., De Pasquale, L., Vivarelli, M., Petrini, S., et al. (2012). Amplification of the response to Toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: Implication for the pathogenesis of macrophage activation syndrome. Arthritis and Rheumatism, 64, 1680–1688.

    Article  CAS  PubMed  Google Scholar 

  42. Humblet-Baron, S., Barber, J. S., Roca, C. P., Lenaerts, A., Koni, P. A., & Liston, A. (2019). Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood, 133, 319–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weaver, L. K., Chu, N., & Behrens, E. M. (2019). Brief report: Interferon-gamma-mediated immunopathology potentiated by toll-like receptor 9 activation in a murine model of macrophage activation syndrome. Arthritis & Rhematology, 71, 161–168.

    Article  CAS  Google Scholar 

  44. Henter, J. I., Elinder, G., Soder, O., Hansson, M., Andersson, B., & Andersson, U. (1991). Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood, 78, 2918–2922.

    Article  CAS  PubMed  Google Scholar 

  45. Imashuku, S., Hibi, S., Sako, M., Ishii, T., Kohdera, U., Kitazawa, K., et al. (1998). Heterogeneity of immune markers in hemophagocytic lymphohistiocytosis: Comparative study of 9 familial and 14 familial inheritance-unproved cases. Journal of Pediatric Hematology/Oncology, 20, 207–214.

    Article  CAS  PubMed  Google Scholar 

  46. Imashuku, S., Hibi, S., Tabata, Y., Sako, M., Sekine, Y., Hirayama, K., et al. (1998). Biomarker and morphological characteristics of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis. Medical and Pediatric Oncology, 31, 131–137.

    Article  CAS  PubMed  Google Scholar 

  47. Put, K., Avau, A., Brisse, E., Mitera, T., Put, S., Proost, P., et al. (2015). Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: Tipping the balance between interleukin-18 and interferon-gamma. Rheumatology (Oxford), 54, 1507–1517.

    Article  Google Scholar 

  48. Schneider, E. M., Lorenz, I., Muller-Rosenberger, M., Steinbach, G., Kron, M., & Janka-Schaub, G. E. (2002). Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood, 100, 2891–2898.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, X. J., Tang, Y. M., Song, H., Yang, S. L., Xu, W. Q., Zhao, N., et al. (2012). Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. The Journal of Pediatrics, 160, 984–990 e981.

    Article  CAS  PubMed  Google Scholar 

  50. Yang, S. L., Xu, X. J., Tang, Y. M., Song, H., Xu, W. Q., Zhao, F. Y., et al. (2016). Associations between inflammatory cytokines and organ damage in pediatric patients with hemophagocytic lymphohistiocytosis. Cytokine, 85, 14–17.

    Article  CAS  PubMed  Google Scholar 

  51. Bracaglia, C., de Graaf, K., Pires Marafon, D., Guilhot, F., Ferlin, W., Prencipe, G., et al. (2017). Elevated circulating levels of interferon-gamma and interferon-gamma-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 76, 166–172.

    Article  CAS  PubMed  Google Scholar 

  52. De Benedetti, F., Brunner, H. I., Ruperto, N., Kenwright, A., Wright, S., Calvo, I., et al. (2012). Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. The New England Journal of Medicine, 367, 2385–2395.

    Article  PubMed  CAS  Google Scholar 

  53. Ruperto, N., Brunner, H. I., Quartier, P., Constantin, T., Wulffraat, N., Horneff, G., et al. (2012). Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. The New England Journal of Medicine, 367, 2396–2406.

    Article  CAS  PubMed  Google Scholar 

  54. Shimizu, M., Yokoyama, T., Yamada, K., Kaneda, H., Wada, H., Wada, T., et al. (2010). Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology (Oxford), 49, 1645–1653.

    Article  CAS  Google Scholar 

  55. Weiss, E. S., Girard-Guyonvarc’h, C., Holzinger, D., de Jesus, A. A., Tariq, Z., Picarsic, J., et al. (2018). Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood, 131, 1442–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lam, M. T. C., Coppola S., Krumbach, O. H. F., Prencipe, G., Insalaco, A., Cifaldi, C., et al. (2019). A novel autoinflammatory disease characterized by neonatal-onset cytopenia with autoinflammation, rash, and hemophagocytosis (NOCARH) due to aberrant CDC42 function. Congress of the International Society of Systemic Autoinflammatory Diseases.

    Google Scholar 

  57. Girard-Guyonvarc’h, C., Palomo, J., Martin, P., Rodriguez, E., Troccaz, S., Palmer, G., et al. (2018). Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood, 131, 1430–1441.

    Article  PubMed  CAS  Google Scholar 

  58. Lortat-Jacob, H., Baltzer, F., & Grimaud, J. A. (1996). Heparin decreases the blood clearance of interferon-gamma and increases its activity by limiting the processing of its carboxyl-terminal sequence. The Journal of Biological Chemistry, 271, 16139–16143.

    Article  CAS  PubMed  Google Scholar 

  59. Lortat-Jacob, H., Brisson, C., Guerret, S., & Morel, G. (1996). Non-receptor-mediated tissue localization of human interferon-gamma: Role of heparan sulfate/heparin-like molecules. Cytokine, 8, 557–566.

    Article  CAS  PubMed  Google Scholar 

  60. Takada, H., Takahata, Y., Nomura, A., Ohga, S., Mizuno, Y., & Hara, T. (2003). Increased serum levels of interferon-gamma-inducible protein 10 and monokine induced by gamma interferon in patients with haemophagocytic lymphohistiocytosis. Clinical and Experimental Immunology, 133, 448–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. My, L. T., Lien le, B., Hsieh, W. C., Imamura, T., Anh, T. N., Anh, P. N., et al. (2010). Comprehensive analyses and characterization of haemophagocytic lymphohistiocytosis in Vietnamese children. British Journal of Haematology, 148, 301–310.

    Article  PubMed  Google Scholar 

  62. Han, J. H., Suh, C. H., Jung, J. Y., Ahn, M. H., Han, M. H., Kwon, J. E., et al. (2017). Elevated circulating levels of the interferon-gamma-induced chemokines are associated with disease activity and cutaneous manifestations in adult-onset Still’s disease. Scientific Reports, 7, 46652.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Billiau, A. D., Roskams, T., Van Damme-Lombaerts, R., Matthys, P., & Wouters, C. (2005). Macrophage activation syndrome: Characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood, 105, 1648–1651.

    Article  CAS  PubMed  Google Scholar 

  64. Locatelli, F., Jordan, M. B., Allen, C. E., Cesaro, S., Sevilla, J., Rao, A., et al. (2018). Safety and efficacy of emapalumab in pediatric patients with primary hemophagocytic lymphohistiocytosis. American Society of Hematology Annual Meeting

    Google Scholar 

  65. Lounder, D. T., Bin, Q., de Min, C., & Jordan, M. B. (2019). Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Advances, 3, 47–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bracaglia, C. (2018). Emapalumab, an anti-interferon gamma monoclonal antibody in two patients with NLRC4-related disease and severe hemophagocytic lymphohistiocytosis (HLH). Pediatric Rheumatolology, 16, 2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio De Benedetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Benedetti, F. (2019). Anti-interferon-γ Therapy for Cytokine Storm Syndromes. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_33

Download citation

Publish with us

Policies and ethics