Skip to main content

Improvement of Environmental Characteristics of Diesel Locomotive Engine with Turbocharging by Changing Valve Timing (Based on Miller Cycle)

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019) (ICIE 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

The article presents the results of upgrading a diesel locomotive engine with turbocharging and a cylinder with the diameter of 210 mm and a piston stroke of 210 mm through changing the valve timing (based on the Miller cycle). The research was carried out with numerical simulation in the ACTUS programme and based on experimental studies of test benches at the Ural Diesel Motor Plant. In the course of mathematical modelling, the hypothesis of the positive effect of an early closure of the intake valve on the diesel engine’s environmental performance was tested. It has been established that an early closure of the intake valve leads to a reduction in NOx emissions in exhaust gases by up to 20% with a slight change in power and specific fuel consumption (±3%). Based on the experimental research on diesel performance, comparative harmful emission diagrams for the basic and upgraded engines (NOx, CO and CH) are constructed. It was experimentally established that the change in the gas distribution phases (based on the Miller cycle) leads to a 16% decrease in NOx content, a 50% reduction in CO and a 54% reduction in CH. At the same time, a decrease in the specific effective flow rate reaches a value of 3.3% for certain operating modes of the diesel engine. The values obtained for the concentration of harmful emissions in exhaust gases are substantially lower than those required by international standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  2. Kavtaradze RZ, Zelentsov AA, Iosebidze JS et al (2015) Innovative methods for improvement of technical, economic and ecological efficiency of motor cars. NOVA-Publishers, New York

    Google Scholar 

  3. Zhilkin BP, Lashmanov VV, Plotnikov LV et al (2015) Improvement of processes in the gas-air tracts of piston internal combustion engines: monograph. Ural Publishers of the University, Ekaterinburg

    Google Scholar 

  4. Pesic R, Milojevic S (2013) Efficiency and ecological characteristics of a VCR diesel engine. Int J Autom Technol 14(5):675–681

    Article  Google Scholar 

  5. Bo L, Wenqing G, Binbin S (2015) Benefits of the electromagnetic actuated valve train in gasoline engine application. Int J Eng Trans B: Appl 28(11):1656–1662. https://doi.org/10.5829/idosi.ije.2015.28.11b.14

    Article  Google Scholar 

  6. Zhang X, Wang H, Zheng Z et al (2016) Effects of late intake valve closing (LIVC) and rebreathing valve strategies on diesel engine performance and emissions at low loads. Appl Therm Eng 98:310–319. https://doi.org/10.1016/j.applthermaleng.2015.12.045

    Article  Google Scholar 

  7. Schück C, Samenfink W, Schünemann E et al (2018) Analysis of particulate number emissions during dynamic load changes for port fuel injection on an optically accessible, turbocharged four-cylinder spark ignition engine. Int J Engine Res 19(1):78–85. https://doi.org/10.1177/1468087417731044

    Article  Google Scholar 

  8. Braga LB, Silveira JL, Evaristo Da Silva M et al (2014) Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects. Appl Therm Eng 63(1):354–361. https://doi.org/10.1016/j.applthermaleng.2013.10.053

    Article  Google Scholar 

  9. Zhao J (2017) Research and application of over-expansion cycle (Atkinson and Miller) engines—a review. Appl Energy 185:300–319. https://doi.org/10.1016/j.apenergy.2016.10.063

    Article  Google Scholar 

  10. Wu Z, Chen L, Ge Y et al (2018) Optimization of the power, efficiency and ecological function for an air-standard irreversible dual-miller cycle. Front Energy 3:1–11. https://doi.org/10.1007/s11708-018-0557-z

    Article  Google Scholar 

  11. Wu Z, Chen L, Ge Y et al (2018) Thermodynamic optimization for an air-standard irreversible dual-miller cycle with linearly variable specific heat ratio of working fluid. Int J Heat Mass Transf 124:46–57. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.049

    Article  Google Scholar 

  12. Brückner C, Kyrtatos P, Boulouchos K (2018) NOx emissions in direct injection diesel engines: Part 2: model performance for conventional, prolonged ignition delay, and premixed charge compression ignition operating conditions. Int J Engine Res 19(5):528–541. https://doi.org/10.1177/1468087417721558

    Article  Google Scholar 

  13. Molina S, García A, Monsalve-Serrano J et al (2018) Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Appl Therm Eng 136:161–168. https://doi.org/10.1016/j.applthermaleng.2018.02.106

    Article  Google Scholar 

  14. Zou X, Liu W, Lin Z et al (2018) An experimental investigation of the effects of fuel injection strategy on the efficiency and emissions of a heavy-duty engine at high load with gasoline compression ignition. Fuel 220:437–445. https://doi.org/10.1016/j.fuel.2018.02.035

    Article  Google Scholar 

  15. Kim J, Bae C (2017) Emission reduction through internal and low-pressure loop exhaust gas recirculation configuration with negative valve overlap and late intake valve closing strategy in a compression ignition engine. Int J Engine Res 18(10):973–990. https://doi.org/10.1177/1468087417692680

    Article  Google Scholar 

  16. Wei H, Shao A, Hua J et al (2018) Effects of applying a Miller cycle with split injection on engine performance and knock resistance in a downsized gasoline engine. Fuel 214:98–107. https://doi.org/10.1016/j.fuel.2017.11.006

    Article  Google Scholar 

  17. He Y, Sun D, Liu J et al (2018) Optimization of a turbocharger and supercharger compound boosting system for a Miller cycle engine. Proc Inst Mech Eng, Part D: J Autom Eng 232(2):238–253. https://doi.org/10.1177/0954407017695136

    Article  Google Scholar 

  18. Pedrozo VB, Zhao H (2018) Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling. Appl Energy 210:138–151. https://doi.org/10.1016/j.apenergy.2017.10.092

    Article  Google Scholar 

  19. Zhang Q, Xian K, Li M (2017) Investigation of performance and emission characteristics on a large-bore spark-ignition natural gas engine with scavenged prechamber and miller cycle attribute. J Energy Eng 143(5):04017026. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000452

    Article  Google Scholar 

  20. Ojapah MM, Zhao H, Zhang Y (2016) Effects of ethanol on combustion and emissions of a gasoline engine operating with different combustion modes. Int J Engine Res 17(9):998–1011. https://doi.org/10.1177/1468087416634517

    Article  Google Scholar 

  21. Imperato M, Kaario O, Larmi M et al (2018) Emission reduction methods and split fuel injection in a marine four-stroke engine. J Mar Sci Technol (Japan) 23(1):94–103. https://doi.org/10.1007/s00773-017-0458-6

    Article  Google Scholar 

  22. Gonca G, Sahin B (2017) Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Appl Therm Eng 118:138–146. https://doi.org/10.1016/j.applthermaleng.2017.02.039

    Article  Google Scholar 

  23. Plotnikov LV, Bernasconi S, Brodov YM (2017) The effects of the intake pipe configuration on gas exchange, and technical and economic indicators of diesel engine with the 21/21 dimension. Proc Engineering 206:140–145. https://doi.org/10.1016/j.proeng.2017.10.450

    Article  Google Scholar 

  24. Bernasconi S (2015) Two-stage turbocharging solutions for tier 4 rail applications. In: Internal combustion engine division’s fall technical conference ASME ICED 2015, Huston, USA, 08–11 Nov 2015

    Google Scholar 

  25. Schurmann P (2013) Contribution of turbocharging solutions towards improved fuel efficiency of two-stroke low-speed engines. In: 27th CIMAC World Congress on Combustion Engines CIMAC 2013, Shanghai, China, 13–16 May 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Plotnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plotnikov, L.V., Bernasconi, S., Jacoby, P. (2020). Improvement of Environmental Characteristics of Diesel Locomotive Engine with Turbocharging by Changing Valve Timing (Based on Miller Cycle). In: Radionov, A., Kravchenko, O., Guzeev, V., Rozhdestvenskiy, Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). ICIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-22041-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22041-9_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22040-2

  • Online ISBN: 978-3-030-22041-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics