Skip to main content

The Transition from Fetal to Postnatal Life: Normal and Abnormal Hearts

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease
  • 1564 Accesses

Abstract

At no other time in life does the human cardiovascular system undergo changes as profound as those changes that occur at birth. The circulation switches from one that is in parallel to one that is in series, systemic afterload increases suddenly, and pulmonary afterload decreases. The fetal shunts – the patent ductus arteriosus (PDA) and the patent foramen ovale (PFO) – close. The infant with a cardiovascular anomaly dependent on the parallel circulation and the fetal shunts will not survive the transition to stable postnatal life without intervention. This chapter will first review the prenatal hemodynamics and flow patterns in the normal and abnormal fetal heart. Second, it will describe the circulatory changes accompanying birth and explain the consequences of the extrauterine life to the neonate with cardiac anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckersley L, Hornberger LK. Cardiac function and dysfunction in the fetus. Echocardiography. 2017;34(12):1776–1787.

    Article  PubMed  Google Scholar 

  2. Brooks PA, Khoo NS, Hornberger LK. Systolic and diastolic function of the fetal single left ventricle. J Am Soc Echocardiogr. 2014;27(9):972–977.

    Google Scholar 

  3. Howley LW, Yamamoto Y, Sonesson SE, Sekar P, Jain V, Motan T, Savard W, Wagner BD, Trines J, Hornberger LK. Antegrade late diastolic arterial blood flow in the fetus: insight into fetal atrial function. Am J Obstet Gynecol. 2013;208(6):490.e1–8.

    Article  Google Scholar 

  4. Wloch A, Rozmus-Warcholinska W, Cnota W, Huhta JC, Acharya G. Atrial dominance in the human embryonic heart: a study of cardiac function at 6–10 weeks of gestation. Ultrasound Obstet Gynecol. 2015;46(5):553–557.

    Article  CAS  PubMed  Google Scholar 

  5. Acharya G, Pavlovic M, Ewing L, Nollmann D, Leshko J, Huhta JC. Comparison between pulsed-wave Doppler- and tissue Doppler-derived Tei indices in fetuses with and without congenital heart disease. Ultrasound Obstet Gynecol. 2008;31(4):406–411.

    Article  CAS  PubMed  Google Scholar 

  6. Acharya G, Archer N, Huhta JC. Functional assessment of the evolution of congenital heart disease in utero. Curr Opin Pediatr. 2007;19(5):533–537.

    Article  PubMed  Google Scholar 

  7. Yamamoto Y, Khoo NS, Brooks PA, Savard W, Hirose A, Hornberger LK. Severe left heart obstruction with retrograde arch flow influences fetal cerebral and placental blood flow. Ultrasound Obstet Gynecol. 2013;42(3):294–299.

    Article  CAS  PubMed  Google Scholar 

  8. Bhat AH, Kehl DW, Tacy TA, Moon-Grady AJ, Hornberger LK. Diagnosis of tetralogy of Fallot and its variants in the late first and early second trimester: details of initial assessment and comparison with later fetal diagnosis. Echocardiography. 2013;30(1):81–7.

    Article  PubMed  Google Scholar 

  9. Laudy JA, de Ridder MA, Wladimiroff JW. Human fetal pulmonary artery velocimetry: repeatability and normal values with emphasis on middle and distal pulmonary vessels. Ultrasound Obstet Gynecol. 2000;16(3):284–290.

    Article  CAS  PubMed  Google Scholar 

  10. Soyeur D, Schaaps J-P, Kulbertus H. Pulsed Doppler assessment. Sivan E, Rotstein Z, Lipitz S, Sevillia J, Achiron R. Segmentary fetal branch pulmonary artery blood flow velocimetry: an in-utero Doppler study. Ultrasound Obstet Gynecol. 2000;16(5):453–456.

    Google Scholar 

  11. Mielke G, Benda N. Cardiac output and central distribution of blood flow in the human fetus. Circulation. 2001;103(12):1662–1668.

    Article  CAS  PubMed  Google Scholar 

  12. Rasanen J, Huhta JC, Weiner S, Wood DC, Ludomirski A. Fetal branch pulmonary arterial vascular impedance during the second half of pregnancy. Am J Obstet Gynecol. 1996;174(5):1441–1449.

    Article  CAS  PubMed  Google Scholar 

  13. Kenny JF, Plappert T, Doubilet P, Saltzman DH, Cartier M, Zollars L, Leatherman GF, St John Sutton MG. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation. 1986;74(6):1208–1216.

    Article  CAS  PubMed  Google Scholar 

  14. Kiserud T. Fetal venous circulation—an update on hemodynamics. J Perinat Med. 2000;28(2):90–96.

    Google Scholar 

  15. Lees C, Albaiges G, Deane C, Parra M, Nicolaides KH. Assessment of umbilical arterial and venous flow using color Doppler. Ultrasound Obstet Gynecol. 1999;14(4):250–255.

    Article  CAS  PubMed  Google Scholar 

  16. Sutton MS, Theard MA, Bhatia SJ, Plappert T, Saltzman DH, Doubilet P. Changes in placental blood flow in the normal human fetus with gestational age. Pediatr Res. 1990;28(4):383–387.

    Article  CAS  PubMed  Google Scholar 

  17. Rizzo G, Arduini D, Romanini C. Umbilical vein pulsations: a physiologic finding in early gestation. Am J Obstet Gynecol. 1992;167(3):675–677.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson AD, Rao PS, Aeschlimann S. Normal fetal foramen flap and transatrial Doppler velocity pattern. J Am Soc Echocardiogr. 1990;3(6):491–494.

    Google Scholar 

  19. Sutton MS, Groves A, MacNeill A, Sharland G, Allan L. Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study. Br Heart J. 1994;71(3):232–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kiserud T, Ozaki T, Nishina H, Rodeck C, Hanson MA. Effect of NO, phenylephrine, and hypoxemia on ductus venosus diameter in fetal sheep. Am J Physiol Heart Circ Physiol. 2000;279(3):H1166–71.

    Article  CAS  PubMed  Google Scholar 

  21. Coceani F, Adeagbo AS, Cutz E, Olley PM. Autonomic mechanisms in the ductus venosus of the lamb. Am J Physiol Heart Circ Physiol. 1984;247:H17–H24.

    Article  CAS  Google Scholar 

  22. Adeagbo AS, Coceani F, Olley PM. The response of the lamb ductus venosus to prostaglandins and inhibitors of prostaglandin and thromboxane systhese. Circ Res. 1982;51(5):580–586.

    Article  CAS  PubMed  Google Scholar 

  23. Kiserud T, Rasmussenk S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182:147–153.

    Article  CAS  PubMed  Google Scholar 

  24. Sweeney LJ, Zak R, Manasek FJ. Transitions in cardiac isomyosin expression during differentiation of the embryonic chick heart. Circ Res. 1987;61:287–295.

    Article  CAS  PubMed  Google Scholar 

  25. Friedman WF. The intrinsic physiological properties of the developing heart. Prog Cardiovasc Dis. 1972;15:87–111.

    Article  CAS  PubMed  Google Scholar 

  26. Mahony L, Jones LR. Developmental changes in cardiac sarcoplasmic reticulum in sheep. J Biol Chem. 1986;261(32):15257–15265.

    Google Scholar 

  27. Grant DA, Maloney JE, Tyberg JV, Walker AM. Effects of external constraint on the fetal left ventricular function curve. Am Heart J. 1992;123(6):1601–1609.

    Article  CAS  PubMed  Google Scholar 

  28. Hawkins J, Van Hare GF, Schmidt KG, Rudolph AM. Effects of increasing afterload on left ventricular output in fetal lambs. Circ Res. 1989;65(1):127–134.

    Article  CAS  PubMed  Google Scholar 

  29. Reller MD, Morton MJ, Reid DL, Thornburg KL. Fetal lamb ventricles respond differently to filling and arterial pressures and to in utero ventilation. Pediatr Res. 1987;22(6):621–626.

    Article  CAS  PubMed  Google Scholar 

  30. Thornburg KL, Morton MJ. Filling and arterial pressures as determinants of left ventricular stroke volume in fetal lambs. Am J Phys. 1986;251(5 Pt 2):H961–H968.

    CAS  Google Scholar 

  31. Ingwall JS, Kramer MF, Woodman D, Friedman WF. Maturation of energy metabolism in the lamb: changes in myosin ATPase and creatine kinase activities. Pediatr Res. 1981;15:1128–1133.

    CAS  PubMed  Google Scholar 

  32. Nakanishi T, Okuda H, Kamata K, Abe K, Sekiguchi M, Takao A. Development of myocardial contraction system in the fetal rabbit. Pediatr Res. 1987;22:201–207.

    Article  CAS  PubMed  Google Scholar 

  33. Chattergoon NN, Giraud GD, Thornburg KL. Thyroid hormone inhibits proliferation of fetal cardiac myocytes in vitro. J Endocrinol. 2007;192(2):R1–R8.

    Google Scholar 

  34. Heymann MA, Rudophy AM. Effect of congenital heart disease on fetal and neonatal circulations. Prog Cardiovasc Dis. 1972;15:115–143.

    Article  CAS  PubMed  Google Scholar 

  35. Itsukaichi M, Kikuchi A, Yoshihara K, Serikawa T, Takakuwa K, Tanaka K. Changes in fetal circulation associated with congenital heart disease and their effects on fetal growth. Fetal Diagn Ther. 2011;30(3):219–224.

    Article  PubMed  Google Scholar 

  36. Hinton RB, Andelfinger G, Sekar P, Hinton AC, Gendron RL, Michelfelder EC, Robitaille Y, Benson DW. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res. 2008;64(4):364–369.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wladimiroff JW, van Wijngaard JA, Degani S, et al. Cerebral and umbilical arterial blood flow velocity waveforms in normal and growth retarded pregnancies. Obstet Gynecol. 1987;69:705–709.

    CAS  PubMed  Google Scholar 

  38. Vyas S, Nicolaides KH, Bower S, Campbell S. Middle cerebral artery flow velocity waveforms in fetal hypoxaemia. Br J Obstet Gynaecol. 1990;97:797–803.

    Article  CAS  PubMed  Google Scholar 

  39. Rudolph AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res. 1985;57(6):811–821.

    Article  CAS  PubMed  Google Scholar 

  40. Berg C, Gembruch O, Gembruch U, Geipel A. Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect? Ultrasound Obstet Gynecol. 2009;34:666–672.

    Article  CAS  PubMed  Google Scholar 

  41. Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, Cetta F, Falkensammer CB, Huhta JC, Kleinman CS. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003;24(5):436–443.

    Article  CAS  PubMed  Google Scholar 

  42. Kaltman JR, Di H, Tian Z, Rychik J. Impact of congenital heart disease on cerebral blood flow dynamics in the fetus. Ultrasound Obstet Gynecol. 2005;23:32–36.

    Article  Google Scholar 

  43. Arduni D, Rizzo G. Normal values of Pulsatility Index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J Perinat Med. 1990;18(3):165–167.

    Google Scholar 

  44. Fouron JC. The unrecognized physiological and clinical significance of the fetal aortic isthmus. Ultrasound Obstet Gynecol. 2003;22(5):441–447.

    Article  PubMed  Google Scholar 

  45. Taketazu M, Barrea C, Smallhorn JF, Wilson GJ, Hornberger LK. Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome. J Am Coll Cardiol. 2004;43(10):1902–1907.

    Google Scholar 

  46. Javois AJ, Van Bergen AH, Cuneo BF, Husayni TS. Novel approach to the newborn with hypoplastic left heart syndrome and intact atrial septum. Catheter Cardiovasc Interv. 2005;66(2):268–272.

    Article  PubMed  Google Scholar 

  47. MacColl CE, Manlhiot C, Page C, McCrindle BW, Miner SE, Jaeggi ET, Nield LE. Factors associated with in utero demise of fetuses that have underlying cardiac pathologies. Pediatr Cardiol. 2014;35(8):1403–1414.

    Article  PubMed  Google Scholar 

  48. Sharland GK, Chita SK, Allan LD. Tricuspid valve dysplasia or displacement in intrauterine life. J Am Coll Cardiol. 1991:17(4): 944–949.

    Google Scholar 

  49. Freud LR, Escobar-Diaz MC, Kalish BT, Komarlu R, Puchalski MD, Jaeggi ET, Szwast AL, Freire G, Levasseur SM, Kavanaugh-McHugh A, Michelfelder EC, Moon-Grady AJ, Donofrio MT, Howley LW, Tierney ES, Cuneo BF, Morris SA, Pruetz JD, van der Velde ME, Kovalchin JP, Ikemba CM, Vernon MM, Samai C, Satou GM, Gotteiner NL, Phoon CK, Silverman NH, McElhinney DB, Tworetzky W. Outcomes and predictors of perinatal mortality in fetuses with ebstein anomaly or tricuspid valve dysplasia in the current era: a multicenter study. Circulation. 2015;132(6):481–489.

    Article  PubMed  Google Scholar 

  50. Wertaschnigg D, Manlhiot C, Jaeggi M, Seed M, Dragulescu A, Schwartz SM, van Arsdell G, Jaeggi ET. Contemporary outcomes and factors associated with mortality after a fetal or neonatal diagnosis of ebstein anomaly and tricuspid valve disease. Can J Cardiol. 2016;32(12):1500–1506.

    Article  PubMed  Google Scholar 

  51. Jouannic JM, Gavard L, Fermont L, Le Bidois J, Parat S, Vouhé PR, Dumez Y, Sidi D, Bonnet D. Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation. 2004;110(13):1743–1746.

    Article  PubMed  Google Scholar 

  52. Oberhänsli-Weiss I, Heymann MA, Rudolph AM, Melmon KL. The pattern and mechanical response of the ductus arteriosus and umbilical artery to oxygen. Pediatr Res. 1972:6:693–700.

    Article  PubMed  Google Scholar 

  53. McMurphy DM, Heymann MA, Rudolph AM, Melmon KL. Developmental changes in constriction of the ductus arteriosus: responses to oxygen and vasoactive agents in the isolated ductus arteriosus of the fetal lamb. Pediatr Res. 1972;6(4):231–238.

    Article  CAS  PubMed  Google Scholar 

  54. Rudolph AM. Aortopulmonary transposition in the fetus: speculation on pathophysiology and therapy. Pediatr Res. 2007;61(3): 375–380.

    Article  PubMed  Google Scholar 

  55. Tuo G, Paladini D, Montobbio G, Volpe P, Cheli M, Calevo MG, Marasini M. Prenatal echocardiographic assessment of foramen ovale appearance in fetuses with d-transposition of the great arteries and impact on neonatal outcome. Fetal Diagn Ther. 2017;42(1):48–56.

    Article  PubMed  Google Scholar 

  56. Walther FJ, Benders MJ, Leighton JO. Early changes in the neonatal circulatory transition. J Pediatr. 1993;123(4):625–632.

    Google Scholar 

  57. Rudolph AM. Congenital Diseases of the Heart: Clinical Physiological Considerations. 2nd ed. Armonk, NY: Futura Publishing Company; 2001.

    Google Scholar 

  58. Birk E, Tyndall MR, Erickson LC, Rudolph AM, Roberts JM. Effects of thyroid hormone on myocardial adrenergic beta-receptor responsiveness and function during late gestation. Pediatr Res. 1992. 31(5):468–473.

    Article  CAS  PubMed  Google Scholar 

  59. Rudolph AM, Roman C, Gournay V. Perinatal myocardial DNA and protein changes in the lamb: effect of cortisol in the fetus. Pediatr Res. 1999;46(2):141–146.

    Article  CAS  PubMed  Google Scholar 

  60. Hornberger LK, Sahn DJ, Kleinman CS, Copel JA, Reed KL. Tricuspid valve disease with significant tricuspid insufficiency in the fetus: diagnosis and outcome. J Am Coll Cardiol. 1991;17(1):167–173.

    Google Scholar 

  61. Punn R, Silverman NH. Fetal predictors of urgent balloon atrial septostomy in neonates with complete transposition. J Am Soc Echocardiogr. 2011;24(4):425–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina F. Cuneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuneo, B.F. (2020). The Transition from Fetal to Postnatal Life: Normal and Abnormal Hearts. In: Munoz, R., Morell, V., da Cruz, E., Vetterly, C., da Silva, J. (eds) Critical Care of Children with Heart Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-21870-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21870-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21869-0

  • Online ISBN: 978-3-030-21870-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics