Skip to main content

Heart–Lung Interactions and Cardiovascular Support in Pediatric Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
Pediatric Acute Respiratory Distress Syndrome

Abstract

The acute respiratory distress syndrome (ARDS) is characterized by bilateral diffuse alveolar disease on radiograph, restrictive lung physiology, a decrease in functional residual capacity (FRC), intrapulmonary shunt, and arterial hypoxemia. In ARDS, significant positive airway pressure is often needed in order to restore and maintain an adequate FRC. Despite improving oxygenation, the use of positive airway pressure may lead to a decrement in cardiac output (CO), negating the increase in oxygen content, or in more severe cases a decrease in systemic oxygen delivery (DO2). In this chapter, we will discuss the physiologic underpinnings of heart–lung interactions, with an emphasis on the impact of positive airway pressure on right ventricular (RV) loading conditions and output and the salient aspects of the pathophysiology of ARDS in order to discuss the impact, assessment, and treatment of positive pressure ventilation (PPV)-induced cardiovascular dysfunction in pediatric ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith LS, Zimmerman JZ, Martin TR. Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med. 2013;14:631–43.

    Article  PubMed  Google Scholar 

  2. Bronicki RA, Anas NG. Cardiopulmonary interaction. Pediatr Crit Care Med. 2009;10:313–22.

    Article  PubMed  Google Scholar 

  3. Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return and various right atrial pressures and the normal venous return curve. Am J Phys. 1957;189(3):609–15.

    Article  CAS  Google Scholar 

  4. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pinsky MR. Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:1237–45.

    CAS  PubMed  Google Scholar 

  6. Bronicki RA, Baden HP. Pathophysiology of right ventricular failure in pulmonary hypertension. Pediatr Crit Care Med. 2010;11(Suppl):S15–22.

    Article  PubMed  Google Scholar 

  7. Noordegraaf AV, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43.

    Article  Google Scholar 

  8. Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gattinoni L, Marini JJ, Pesenti A, et al. The “baby lung” became as adult. Intensive Care Med. 2016;42:663–73.

    Article  PubMed  Google Scholar 

  10. Price LC, McAuley DF, Marino PS, et al. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302:L803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis. 1979;120:1039–52.

    CAS  PubMed  Google Scholar 

  12. Wagner PD. Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev. 1977;57(2):257–312.

    Article  CAS  PubMed  Google Scholar 

  13. Dessap AM, Boissier F, Leon R, Carreira S, Campo FR, Lemarie F, et al. Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med. 2010;38:1786–92.

    Article  Google Scholar 

  14. Yehya N, Bhalla AK, Thomas NJ, Khemani RG. Alveolar dead space fraction discriminates mortality in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2016;17(2):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346:1281–6.

    Article  PubMed  Google Scholar 

  16. Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42:739–49.

    Article  CAS  PubMed  Google Scholar 

  17. Mekontso Dessap A, Boissier F, Charron C, Begot E, Repesse X, Legras A, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence predictors, and clinical impact. Intensive Care Med. 2016;42:862–70.

    Article  PubMed  Google Scholar 

  18. McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder TJ, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695–703.

    Article  PubMed  Google Scholar 

  19. Vieillard-Baron A, Schmitt JM, Augarde R, Fellahi JL, Prin S, Page B, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29(8):1551–5.

    Article  CAS  PubMed  Google Scholar 

  20. Osman D, Monnet X, Castelain V, Anguel N, Warszawski J, Teboul JL. Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med. 2009;35(1):69–76.

    Article  PubMed  Google Scholar 

  21. Monchi M, Bellenfant F, Cariou A, Joly LM, Thebert D, Laurent I, et al. Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med. 1998;158:1076–81.

    Article  CAS  PubMed  Google Scholar 

  22. Boissier F, Katsahian S, Razazi K, Thille AW, Roche-Campo F, Leon R, et al. Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med. 2013;39:1725–33.

    Article  PubMed  Google Scholar 

  23. Vieillard-Baron A, Loubieres Y, Schmitt J-M, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.

    Article  CAS  PubMed  Google Scholar 

  24. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.

    Article  PubMed  Google Scholar 

  25. Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, et al. Septic cardiomyopathy. Crit Care Med. 2018;46(4):625–34.

    Article  PubMed  Google Scholar 

  26. Rimensberger PC, Cheifetz IM, Pediatric Acute Lung Injury Consensus Conference Group. Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:S51–60.

    Article  PubMed  Google Scholar 

  27. Gunn SR, Pinsky MR. Implications of arterial pressure variation in patients in the intensive care unit. Curr Opin Crit Care. 2001;7:212–7.

    Article  CAS  PubMed  Google Scholar 

  28. Gan H, Cannesson M, Chandler J, Ansermino J. Predicting fluid responsiveness in children: a systematic review. Anesth Analg. 2013;117:1380–92.

    Article  PubMed  Google Scholar 

  29. Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest. 1990;98:1450–4.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performances, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.

    Article  PubMed  Google Scholar 

  31. Toussaint GPM, Burgess JH, Hampson LG. Central venous pressure and pulmonary wedge pressure in critical surgical illness. Arch Surg. 1974;109:265–9.

    Article  CAS  PubMed  Google Scholar 

  32. Bronicki RA. Venous oximetry and the assessment of oxygen transport balance. Pediatr Crit Care Med. 2011;12(Suppl):S21–6.

    Article  PubMed  Google Scholar 

  33. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166:1310–9.

    Article  PubMed  Google Scholar 

  34. Jardin F, Dubourg O, Bourdaria JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997;111(1):209–17.

    Article  CAS  PubMed  Google Scholar 

  35. Cortes-Puentes G, Oeckler RA, Marini JJ. Physiology-guided management of hemodynamics in acute respiratory distress syndrome. Ann Translant Med. 2018;6(18):353.

    Article  Google Scholar 

  36. Jone PN, Ivy D. Echocardiography in pediatric pulmonary hypertension. Front Pediatr. 2014;2(124):1–15.

    Google Scholar 

  37. Kassem E, Humpl T, Friedberg MK. Prognostic significance of 2-dimensional, M-mode, and Doppler echo indices of right ventricular function in children with pulmonary arterial hypertension. Am Heart J. 2013;165:1024–31.

    Article  PubMed  Google Scholar 

  38. Jone PN, Hinzman J, Wagner BD, Ivy DD, Younoszai A. Right ventricular to left ventricular diameter ratio at end-systole in evaluating outcomes in children with pulmonary hypertension. J Am Soc Echocardiogr. 2014;27(2):172–8.

    Article  PubMed  Google Scholar 

  39. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation. 1983;68(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  40. Radermacher P, Maggiore SM, Mercat A. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(8):964–84.

    Article  CAS  PubMed  Google Scholar 

  41. Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28:1239–45.

    Article  CAS  PubMed  Google Scholar 

  42. Belenkie I, Horne SG, Dani R, Smith ER, Tyberg JV. Effects of aortic constriction during experimental acute right ventricular pressure loading. Circulation. 1995;92:546–54.

    Article  CAS  PubMed  Google Scholar 

  43. Apitz C, Honjo O, Friedberg MK, Assad RS, Van Arsdell G, Humpl T, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60:17–25.

    Article  PubMed  Google Scholar 

  44. Apitz C, Honjo O, Humpl T, Li J, Assad RS, Cho MY, et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144:1494–501.

    Article  PubMed  Google Scholar 

  45. Ricciardi MJ, Bossone E, Bach DS, Armstrong WF, Rubenfire M. Echocardiographic predictors of an adverse response to a nifedipine trial in primary pulmonary hypertension: diminished left ventricular size and leftward ventricular septal bowing. Chest. 1999;116:1218–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Bronicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flores, S., Loomba, R.S., Bronicki, R.A. (2020). Heart–Lung Interactions and Cardiovascular Support in Pediatric Acute Respiratory Distress Syndrome. In: Shein, S., Rotta, A. (eds) Pediatric Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-21840-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21840-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21839-3

  • Online ISBN: 978-3-030-21840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics