Skip to main content

Current Problems in the Quasi-elastic Incoherent Neutron Scattering and the Collective Drift of Molecules

  • Conference paper
  • First Online:
Modern Problems of the Physics of Liquid Systems (PLMMP 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 223))

Included in the following conference series:

  • 543 Accesses

Abstract

The determination of the self-diffusion coefficient \( D_{\text{s}} \) is one of well known applications of the quasi-elastic incoherent neutron scattering. Here we will show that the half-width of the neutron peak considered as a function of wave vector can be used for the determination of (1) the residence time \( \tau_{0} \) for water molecules and (2) the very important ratio \( D_{\text{c}} /D_\text{s} \) where \( D_{\text{c}} \) is the collective part of the self-diffusion coefficient, caused by its drift in the field of thermal hydrodynamic fluctuations. The applicability region for the simplest diffusion approximation is discussed in details. The influence of the rotational motion of water molecules on spectra of the intermediate scattering function (ISF) is studied. A new type of the high-frequency asymptote for the ISF-spectra is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I.I. Gurevich, L.V. Tarasov, Low Energy Neutrons Physics (North-Holland Publishing Co., 1968), p. 621

    Google Scholar 

  2. W. Marshall, S.W. Lovesey, Theory of Thermal Neutron Scattering (Clarendon Press, Oxford, 1971), p. 620

    Google Scholar 

  3. S.-H. Chen, in Hydrogen-Bonded Liquids, ed. by J.C. Dore, J. Teixeira (Kluwer Academic Publishers, Netherlands, 1991), p. 289

    Google Scholar 

  4. L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov, Character of the thermal motion of water molecules according to the data on quasielastic incoherent scattering of slow neutrons. J. Struct. Chem. 47, 48–55 (2006). https://doi.org/10.1007/s10947-006-0264-1

    Article  Google Scholar 

  5. L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov, Self-diffusion in water. J. Struct. Chem. 47(Supplement 1), S50–S60 (2006). https://doi.org/10.1007/s10947-006-0377-6

    Article  Google Scholar 

  6. J. Frenkel, Kinetic Theory of Liquids (Dover Publ, NY, 1955), p. 592

    Google Scholar 

  7. E.N. da C. Andrade, The viscosity of liquids. Nature. 125, 309–310 (1930). http://dx.doi.org/10.1038/125309b0

    Article  ADS  Google Scholar 

  8. K.S. Singwi, A. Sjolander, Diffusive motions in water and cold neutron scattering. Phys. Rev. 119, 863–872 (1960). https://doi.org/10.1103/PhysRev.119.863

    Article  ADS  Google Scholar 

  9. I.L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968), p. 622

    Book  Google Scholar 

  10. D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Oxford University Press, Oxford, 2005), p. 308

    Book  Google Scholar 

  11. K. Okada, M. Yao, Y. Hiejima, H. Kohno, Y. Kojihara, Dielectric relaxation of water and heavy water in the whole fluid phase. J. Chem. Phys. 110, 3026–3037 (1999). https://doi.org/10.1063/1.477897

    Article  ADS  Google Scholar 

  12. H.R. Pruppacher, Self-diffusion coefficient of supercooled water. J. Chem. Phys. 56, 101–108 (1972). https://doi.org/10.1063/1.1676831

    Article  ADS  Google Scholar 

  13. J.H. Simpson, H.Y. Carr, Diffusion and nuclear spin relaxation in water. Phys. Rev. 111, 1201–1202 (1958). https://doi.org/10.1103/PhysRev.111.1201

    Article  ADS  Google Scholar 

  14. T.V. Lokotosh, N.P. Malomuzh, Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids. Phys. A 286, 474–488 (2000). https://doi.org/10.1016/S0378-4371(00)00107-2

    Article  Google Scholar 

  15. L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh, Role of the collective self- diffusion in water and other liquids. J. Mol. Liq. 137, 1–24 (2008). https://doi.org/10.1016/j.molliq.2007.05.003

    Article  Google Scholar 

  16. I.Z. Fisher, Gidrodinamicheskaya asimptotika avtokorrelyacionnoy funkcii skorosti molekuli v klassicheskoy zhidkosti (Hydrodynamic asymptotics of the velocity autocorrelation function of a molecule in a classical fluid). JETP (USSR) 61, 1648–1659 (1971)

    Google Scholar 

  17. P.M. Morse, H. Feshbach, Methods of Theoretical Physics. Part 1 (McGraw-Hill, NY, 1953) p. 997

    Google Scholar 

  18. T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov, K.S. Shakun, New results in the theory of collective self-diffusion in liquids. Ukr. J. Phys. 60, 697–707 (2015). http://dx.doi.org/10.15407/ujpe60.08.0697

    Article  Google Scholar 

  19. L.A. Bulavin, N.P. Malomuzh, K.S. Shakun, MD-modeling of the intermediate scattering function for argon-like liquids and water. 263, 200–208 (2018). http://dx.doi.org/10.1016/j.molliq.2018.04.142

  20. G.G. Malenkov, Structural and dynamical heterogeneity of stable and metastable water. Phys. A 314, 477–484 (2002). https://doi.org/10.1016/S0378-4371(02)01085-3

    Article  ADS  Google Scholar 

  21. V.P. Voloshin, Y. Naberukhin, Hydrogen bond lifetime distributions in computer-simulated water. J. Struct. Chem. 50, 78–89 (2009). https://doi.org/10.1007/s10947-009-0010-6

    Article  Google Scholar 

  22. V.P. Voloshin, Y. Naberukhin, Distributions of hydrogen bond lifetimes in instantaneous and inherent structures of water. Z. Phys. Chem. 223, 999–1011 (2009). https://doi.org/10.1524/zpch.2009.6062

    Article  Google Scholar 

  23. N.P. Malomuzh, Nature of self-diffusion in fluids. Ukr. J. Phys, 63, 1076–1087 (2018). https://doi.org/10.15407/ujpe63.12.1076

    Article  Google Scholar 

  24. T.V. Lokotosh, N.P. Malomuzh, K.S. Shakun, Nature of oscillations for the autocorrelation functions for translational and angular velocities of a molecule. J. Mol. Liq. 96–97, 245–263 (2002). https://doi.org/10.1016/S0167-7322(01)00351-8

    Article  Google Scholar 

  25. T.V. Lokotosh, S. Magazù, G. Maisano, N.P. Malomuzh, Nature of self-diffusion and viscosity in supercooled liquid water. Phys. Rev. E 62, 3572–3580 (2000). https://doi.org/10.1103/PhysRevE.62.3572

    Article  ADS  Google Scholar 

  26. P.A. Egelstaff, An Introduction to the Liquid state (Academic Press, London, NY, 1967), p. 408

    Google Scholar 

  27. M.A. Gonzalez, J.L.F. Abascal, A flexible model for water based on TIP4P/2005. J. Chem. Phys. 135, 224516(1–8) (2011). http://dx.doi.org/10.1063/1.3663219

    Article  ADS  Google Scholar 

  28. C. Oostenbrink, A. Villa, A.E. Mark, W.F. van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS forcefield parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004). http://dx.doi.org/10.1002/jcc.20090

    Article  Google Scholar 

  29. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, Gromacs: fast, flexible and free. J. Comp. Chem. 26, 1701–1718 (2005). https://doi.org/10.1002/jcc.20291

    Article  Google Scholar 

  30. W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hunenberger, P. Kruger, A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular Simulation: The GROMOS96 Manual and User Guide (Hochschulverlag AG an der ETH, Zurich, 1996), p. 1044

    Google Scholar 

  31. U. Essman, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995). https://doi.org/10.1063/1.470117

    Article  ADS  Google Scholar 

  32. S. Nose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334

    Article  ADS  Google Scholar 

  33. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  ADS  Google Scholar 

  34. G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994). https://doi.org/10.1063/1.467468

    Article  ADS  Google Scholar 

  35. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996). https://doi.org/10.1080/00268979600100761

    Article  ADS  Google Scholar 

  36. M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, The GROMACS development team, GROMACS User Manual version 2018, www.gromacs.org (2018) 265 p., http://manual.gromacs.org/documentation/2018/manual-2018.pdf. Accessed 12 Dec 2018

  37. AYu. Kuksin, I.V. Morozov, G.E. Norman, V.V. Stegailov, I.A. Valuev, Standards for molecular dynamics modelling and simulation of relaxation. Mol. Sim. 31, 1005–1017 (2005). https://doi.org/10.1080/08927020500375259

    Article  Google Scholar 

  38. D. Frenkel, B. Smit, Understanding Molecular Simulation, Second Edition: From Algorithms to Applications (Academic Press, San Diego, San Francisco, New York, 2001), p. 664

    Google Scholar 

  39. M. Charbit, G. Blanchet, Digital Signal and Image Processing Using MATLAB (ISTE Ltd, Telecom ParisTech, 2006), p. 512

    Google Scholar 

  40. S. Hess, M. Kroger, W.G. Hoover, Shear modulus of fluids and solids. Phys. A 239, 449–466 (1997). https://doi.org/10.1016/S0378-4371(97)00045-9

    Article  Google Scholar 

  41. C. Vogt, K. Laihem, C. Wiebusch, Speed of sound in bubble-free ice. J. Acoust. Soc. Am. 124, 3613–8 (2009). https://doi.org/10.1121/1.2996304

    Article  ADS  Google Scholar 

  42. NIST Standard Reference Database 69: NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/fluid. Accessed 5 Dec 2018

  43. A.R. Dexter, A.J. Matheson, Elastic moduli and stress relaxation times in liquid argon. J. Chem. Phys. 54, 203–208 (1971). https://doi.org/10.1063/1.1674594

    Article  ADS  Google Scholar 

  44. R. Hartkamp, P.J. Daivis, B.D. Todd, Density dependence of the stress relaxation function of a simple fluid. Phys. Rev. E 87, 032155 (2013). https://doi.org/10.1103/PhysRevE.87.032155

    Article  ADS  Google Scholar 

  45. P.S. van der Gulik, The linear pressure dependence of the viscosity at high densities. Phys. A 256, 39–56 (1998). https://doi.org/10.1016/S0378-4371(98)00197-6

    Article  Google Scholar 

  46. R. Laghaei, A.E. Nasrabad, B.C. Eu, Generic van der Waals equation of state, modified free volume theory of diffusion, and viscosity of simple liquids. J. Phys. Chem. B 109, 5873–5883 (2005). http://dx.doi.org/10.1021/jp0448245

    Article  Google Scholar 

  47. B.A. Younglove, H.J.M. Hanley, The viscosity and thermal conductivity coefficients of gaseous and liquid argon. J. Phys. Chem. Ref. Data 15, 1323–1339 (1986). https://doi.org/10.1063/1.555765

    Article  ADS  Google Scholar 

  48. R. Mills, Self-diffusion in normal and heavy water in the range 1–45°. J. Phy. Chem. 77, 685–688 (1973). https://doi.org/10.1021/j100624a025

    Article  Google Scholar 

  49. K.R. Harris, L.A. Woolf, Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water. J. Chem. Soc. Faraday Trans. 1. 76, 377–385 (1980). http://dx.doi.org/10.1039/f19807600377

    Article  Google Scholar 

  50. N.I. Akhiezer, M.G. Krein, Some Questions in the Theory of Moments (Providence, Amer. Math. Soc., 1962), p. 310

    Book  Google Scholar 

  51. M.G. Krein, A.A. Nudelman, The Markov Moment Problem and Extremal Problems. Translations of Mathematical Monographs, vol. 50 (Amer. Math. Soc., 1977), p. 417

    Google Scholar 

  52. S.J. Karlin, W.J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics (Wiley, London, 1966), p. 586

    MATH  Google Scholar 

  53. L.D. Landau, E.M. Lifshitz, Statistical Mechanics (Pergamon Press, Oxford, 1980), p. 544

    Google Scholar 

  54. D. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes (Wiley, 1997), p. 376

    Google Scholar 

  55. J. Teixeira, M.-C. Bellissent-Funel, S.-H. Chen, J. Dianoux, Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys. Rev. A 31, 1913–1918 (1985). https://doi.org/10.1103/PhysRevA.31.1913

    Article  ADS  Google Scholar 

  56. J. Teixeira, J.-M. Zanotti, M.-C. Bellissent-Funel, S.-H. Chen, Water in confined geometries. Phys. B 234–236, 370–374 (1997). https://doi.org/10.1016/S0921-4526(96)00991-X

    Article  ADS  Google Scholar 

  57. P. Blanckenhagen, Intermolecular vibrations and diffusion in water investigated by scattering of cold neutrons. Ber. Bunsenges. Phys. Chem. 76, 891–903 (1972). https://doi.org/10.1002/bbpc.19720760907

    Article  Google Scholar 

  58. K.-E. Larsson, U. Dahlborg, Proton motion in some hydrogenous liquids studied by cold neutron scattering. Physica 30, 1561–1599 (1964). https://doi.org/10.1016/0031-8914(64)90181-8

    Article  ADS  Google Scholar 

  59. G.J. Safford, P.S. Leung, A.W. Naumann, P.C. Schaffer, Investigation of low-frequency motions of H2O molecules in ionic solutions by neutron inelastic scattering. J. Chem. Phys. 50, 4444–4468 (1969). https://doi.org/10.1063/1.1670917

    Article  ADS  Google Scholar 

  60. S. Magazu, G. Maisano, F. Migliardo, A. Benedetto, Elastic incoherent neutron scattering on systems of biophysical interest: mean square displacement evaluation from self-distribution function. J. Phys. Chem. 112, 8936–8942 (2008). https://doi.org/10.1021/jp711930b

    Article  Google Scholar 

  61. J.W. Tester, M. Modell, Thermodynamics and Its Applications, 3d edn. (Prentice Hall, 1997), p. 960

    Google Scholar 

  62. N.P. Malomuzh, K.S. Shakun, Specific properties of argon-like liquids near their spinodals. 235, 155–162 (2017). https://doi.org/10.1016/j.molliq.2017.01.079

    Article  Google Scholar 

  63. S.V. Lishchuk, N.P. Malomuzh, P.V. Makhlaichuk, Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A 374, 2084–2088 (2010). https://doi.org/10.1016/j.physleta.2010.02.070

    Article  MATH  ADS  Google Scholar 

  64. P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh, Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577–584 (2017). https://doi.org/10.1016/j.molliq.2016.11.101

    Article  Google Scholar 

  65. V.Yu. Bardic, L.A. Bulavin, V.M. Sysoev, N.P. Malomuzh, K.S. Shakun, in Soft Matter Under Exogenic Impacts, ed. by V.A. Mazur, S.J. Rzoska (Springer, 2007), p. 339

    Google Scholar 

  66. VYu. Bardic, N.P. Malomuzh, K.S. Shakun, V.M. Sysoev, Modification of an inverse-power potential for simple liquids and gases. J. Mol. Liq. 127, 96–98 (2006). https://doi.org/10.1016/j.molliq.2006.03.026

    Article  Google Scholar 

  67. V.Yu. Bardic, N.P. Malomuzh, V.M. Sysoe, Functional form of the repulsive potential in the high pressure region. J. Mol. Liq. 120, 27–30 (2005). https://doi.org/10.1016/j.molliq.2004.07.020

    Article  Google Scholar 

  68. V.Yu. Bardik, N.P. Malomuzh, K.S. Shakun, High-frequency asymptote for the velocity auto-correlation function spectrum of argon-like systems. J. Chem. Phys. 136(24), 244511 (2012). http://dx.doi.org/10.1063/1.4729849

    Article  ADS  Google Scholar 

  69. A.I. Fisenko, N.P. Malomuzh, To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383–2411 (2009). https://doi.org/10.3390/ijms10052383

    Article  Google Scholar 

  70. A.I. Fisenko, N.P. Malomuzh, Role of the H-bond network in the creation of life-giving properties of water. Chem. Phys. 345, 164–172 (2008). https://doi.org/10.1016/j.chemphys.2007.08.013

    Article  Google Scholar 

  71. N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, K.N. Pankratov, Cluster structure of water in accordance with the data on dielectric permittivity and heat capacity. J. Struct. Chem. 54, S205–S225 (2013). https://doi.org/10.1134/S0022476613080039

    Article  Google Scholar 

Download references

Acknowledgements

We cordially thanks Professor S. Magazu, Professor G. G. Malenkov, Professor G. E. Norman, Dr. V. Yu. Bardik and V. Sokolov for fruitfull discussion of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Shakun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulavin, L.A., Malomuzh, N.P., Shakun, K.S. (2019). Current Problems in the Quasi-elastic Incoherent Neutron Scattering and the Collective Drift of Molecules. In: Bulavin, L., Xu, L. (eds) Modern Problems of the Physics of Liquid Systems. PLMMP 2018. Springer Proceedings in Physics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-21755-6_2

Download citation

Publish with us

Policies and ethics