Skip to main content

Understanding the Role of Pro-resolving Lipid Mediators in Infectious Keratitis

  • Chapter
  • First Online:
The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1161))

Abstract

Keratitis is a sight-threatening inflammatory condition of the cornea that can be caused by both infectious and non-infectious agents. Physical or chemical trauma are typically related to non-infectious keratitis, which may then become secondarily infected or remain non-infected. Etiology of infectious keratitis is most often associated with bacteria; but viruses, fungi, and parasites are common causative pathogens as well. As a global concern, common risk factors include: systemic immunosuppression (secondary to malnutrition, alcoholism, diabetes, steroid use), previous corneal surgery (refractive corneal surgery, penetrating keratoplasty), extended wear contact lens use, pre-existing ocular surface diseases (dry eye, epithelial defect) and ocular trauma (agriculture- or farm-related) [1–8]. Annual rates of incidence include nearly one million clinical visits due to keratitis in the United States, while it has been reported that roughly two million people develop corneal ulcers in India. Clinically, patients may show signs of eye pain (ranging from mild to severe), blurred vision, photophobia, chemosis and redness. Pathogenesis is generally characterized by rapid progression, focal white infiltrates with underlying stromal inflammation, corneal thinning, stromal edema, mucopurulent discharge and hypopyon, which can lead to corneal scarring, endophthalmitis, and perforation. In fact, corneal opacity is not only a complication of keratitis, but among the leading causes of legal blindness worldwide. Despite that empirical treatment effectively controls most of the pathogens implicated in infectious keratitis, improved clinical outcomes are not guaranteed. Further, if treatment is not initiated in a timely manner, good visual outcome is reduced to approximately 50% of keratitis patients [9]. Moreover, resultant structural alterations, loss of tissue and an unresolved host response remain unaddressed through current clinical management of this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rattanatam T, Heng WJ, Rapuano CJ, Laibson PR, Cohen EJ (2001) Trends in contact lens-related corneal ulcers. Cornea 20:290–294

    Article  CAS  PubMed  Google Scholar 

  2. Stapleton F, Naduvilath T, Keay L, Radford C, Dart J, Edwards K, Carnt N, Minassian D, Holden B (2017) Risk factors and causative organisms in microbial keratitis in daily disposable contact lens wear. PLoS One 12:e0181343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Green M, Apel A, Stapleton F (2008) Risk factors and causative organisms in microbial keratitis. Cornea 27:22–27

    Article  PubMed  Google Scholar 

  4. Keay L, Stapleton F, Schein O (2007) Epidemiology of contact lens-related inflammation and microbial keratitis: a 20-year perspective. Eye Contact Lens 33:346–353. discussion 362–343

    Article  PubMed  Google Scholar 

  5. Thylefors B (1992) Epidemiological patterns of ocular trauma. Aust N Z J Ophthalmol 20:95–98

    Article  CAS  PubMed  Google Scholar 

  6. Sheng XL, Li HP, Liu QX, Rong WN, Du WZ, Ma L, Yan GH, Ma RQ, Zhang JL, Xu HF, Zou WQ, Bi XJ (2014) Prevalence and associated factors of corneal blindness in Ningxia in Northwest China. Int J Ophthalmol 7:557–562

    PubMed  PubMed Central  Google Scholar 

  7. Saha S, Banerjee D, Khetan A, Sengupta J (2009) Epidemiological profile of fungal keratitis in urban population of West Bengal, India. Oman J Ophthalmol 2:114–118

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nirmalan PK, Katz J, Tielsch JM, Robin AL, Thulasiraj RD, Krishnadas R, Ramakrishnan R (2004) Ocular trauma in a rural south Indian population: the Aravind comprehensive eye survey. Ophthalmology 111:1778–1781

    PubMed  Google Scholar 

  9. Jones DB (1981) Decision-making in the management of microbial keratitis. Ophthalmology 88:814–820

    Article  CAS  PubMed  Google Scholar 

  10. Hazlett LD (2004) Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res 23:1–30

    Article  CAS  PubMed  Google Scholar 

  11. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612

    Article  CAS  PubMed  Google Scholar 

  12. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192:1197–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196:1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    Article  CAS  PubMed  Google Scholar 

  15. Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, Serhan CN, Ji RR (2010) Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 16:592–597. 591p following 597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dalli J, Serhan CN (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120:e60–e72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447:869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei J, Gronert K (2017) The role of pro-resolving lipid mediators in ocular diseases. Mol Asp Med 58:37–43

    Article  CAS  Google Scholar 

  19. Gronert K, Maheshwari N, Khan N, Hassan IR, Dunn M, Laniado Schwartzman M (2005) A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J Biol Chem 280:15267–15278

    Article  CAS  PubMed  Google Scholar 

  20. Liclican EL, Gronert K (2010) Molecular circuits of resolution in the eye. Scientific World J 10:1029–1047

    Article  CAS  Google Scholar 

  21. Gronert K (2005) Lipoxins in the eye and their role in wound healing. Prostaglandins Leukot Essent Fatty Acids 73:221–229

    Article  CAS  PubMed  Google Scholar 

  22. Kenchegowda S, Bazan HE (2010) Significance of lipid mediators in corneal injury and repair. J Lipid Res 51:879–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carion TW, Greenwood M, Ebrahim AS, Jerome A, Suvas S, Gronert K, Berger EA (2018) Immunoregulatory role of 15-lipoxygenase in the pathogenesis of bacterial keratitis. FASEB J 32:5026–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fredman G, Oh SF, Ayilavarapu S, Hasturk H, Serhan CN, Van Dyke TE (2011) Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS One 6:e24422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Settimio R, Clara DF, Franca F, Francesca S, Michele D (2012) Resolvin D1 reduces the immunoinflammatory response of the rat eye following uveitis. Mediat Inflamm 2012:318621

    Article  CAS  Google Scholar 

  26. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saban DR, Hodges RR, Mathew R, Reyes NJ, Yu C, Kaye R, Swift W, Botten N, Serhan CN, Dartt DA (2019) Resolvin D1 treatment on goblet cell mucin and immune responses in the chronic allergic eye disease (AED) model. Mucosal Immunol 12:145–153

    Article  CAS  PubMed  Google Scholar 

  28. Dartt DA, Hodges RR, Li D, Shatos MA, Lashkari K, Serhan CN (2011) Conjunctival goblet cell secretion stimulated by leukotrienes is reduced by resolvins D1 and E1 to promote resolution of inflammation. J Immunol 186:4455–4466

    Article  CAS  PubMed  Google Scholar 

  29. Makdoumi K, Mortensen J, Crafoord S (2010) Infectious keratitis treated with corneal crosslinking. Cornea 29:1353–1358

    Article  PubMed  Google Scholar 

  30. Papaioannou L, Miligkos M, Papathanassiou M (2016) Corneal collagen cross-linking for infectious keratitis: a systematic review and meta-analysis. Cornea 35:62–71

    Article  PubMed  Google Scholar 

  31. Alio JL, Abbouda A, Valle DD, Del Castillo JM, Fernandez JA (2013) Corneal cross linking and infectious keratitis: a systematic review with a meta-analysis of reported cases. J Ophthalmic Inflamm Infect 3:47

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gritz DC, Lee TY, Kwitko S, McDonnell PJ (1990) Topical anti-inflammatory agents in an animal model of microbial keratitis. Arch Ophthalmol 108:1001–1005

    Article  CAS  PubMed  Google Scholar 

  33. Flach AJ (2001) Corneal melts associated with topically applied nonsteroidal anti-inflammatory drugs. Trans Am Ophthalmol Soc 99:205–210. discussion 210–202

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guidera AC, Luchs JI, Udell IJ (2001) Keratitis, ulceration, and perforation associated with topical nonsteroidal anti-inflammatory drugs. Ophthalmology 108:936–944

    Article  CAS  PubMed  Google Scholar 

  35. Gritz DC, Kwitko S, Trousdale MD, Gonzalez VH, McDonnell PJ (1992) Recurrence of microbial keratitis concomitant with antiinflammatory treatment in an animal model. Cornea 11:404–408

    Article  CAS  PubMed  Google Scholar 

  36. Austin A, Lietman T, Rose-Nussbaumer J (2017) Update on the management of infectious keratitis. Ophthalmology 124:1678–1689

    Article  PubMed  Google Scholar 

  37. Cohen EJ (2009) The case against the use of steroids in the treatment of bacterial keratitis. Arch Ophthalmol 127:103–104

    Article  PubMed  Google Scholar 

  38. Wilhelmus KR (2002) Indecision about corticosteroids for bacterial keratitis: an evidence-based update. Ophthalmology 109:835–842. quiz 843

    Article  PubMed  Google Scholar 

  39. McGhee CN, Dean S, Danesh-Meyer H (2002) Locally administered ocular corticosteroids: benefits and risks. Drug Saf 25:33–55

    Article  CAS  PubMed  Google Scholar 

  40. Orlans H, Hornby S, Bowler I (2011) In vitro antibiotic susceptibility patterns of bacterial keratitis isolates in Oxford, UK: a 10-year review. Eye 25:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lichtinger A, Yeung SN, Kim P, Amiran MD, Iovieno A, Elbaz U, Ku JY, Wolff R, Rootman DS, Slomovic AR (2012) Shifting trends in bacterial keratitis in Toronto: an 11-year review. Ophthalmology 119:1785–1790

    Article  PubMed  Google Scholar 

  42. Chang VS, Dhaliwal DK, Raju L, Kowalski RP (2015) Antibiotic resistance in the treatment of Staphylococcus aureus keratitis: a 20-year review. Cornea 34:698–703

    Article  PubMed  PubMed Central  Google Scholar 

  43. Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M (2017) Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol 17:212

    Article  PubMed  PubMed Central  Google Scholar 

  44. Asbell PA, Colby KA, Deng S, McDonnell P, Meisler DM, Raizman MB, Sheppard JD Jr, Sahm DF (2008) Ocular TRUST: nationwide antimicrobial susceptibility patterns in ocular isolates. Am J Ophthalmol 145:951–958.e951

    Article  PubMed  Google Scholar 

  45. Haas W, Pillar CM, Torres M, Morris TW, Sahm DF (2011) Monitoring antibiotic resistance in ocular microorganisms: results from the ARMOR 2009 surveillance study. Am J Ophthalmol 152:567–574

    Article  CAS  PubMed  Google Scholar 

  46. Alster Y, Herlin L, Lazar M, Loewenstein A (2000) Intraocular penetration of vancomycin eye drops after application to the medial canthus with closed lids. Br J Ophthalmol 84:300–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640

    Article  CAS  PubMed  Google Scholar 

  48. Su H-C, Ramkissoon K, Doolittle J, Clark M, Khatun J, Secrest A, Wolfgang MC, Giddings MC (2010) The development of ciprofloxacin resistance in Pseudomonas aeruginosa involves multiple response stages and multiple proteins. Antimicrob Agents Chemother 54:4626–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Biteman B, Hassan IR, Walker E, Leedom AJ, Dunn M, Seta F, Laniado-Schwartzman M, Gronert K (2007) Interdependence of lipoxin A4 and heme-oxygenase in counter-regulating inflammation during corneal wound healing. FASEB J 21:2257–2266

    Article  CAS  PubMed  Google Scholar 

  50. Leedom AJ, Sullivan AB, Dong B, Lau D, Gronert K (2010) Endogenous LXA4 circuits are determinants of pathological angiogenesis in response to chronic injury. Am J Pathol 176:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carion TW, McWhirter CR, Grewal DK, Berger EA (2015) Efficacy of VIP as treatment for bacteria-induced keratitis against multiple Pseudomonas aeruginosa strains. Invest Ophthalmol Vis Sci 56:6932–6940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carion TW, Kracht D, Strand E, David E, McWhirter C, Ebrahim AS, Berger EA (2018) VIP modulates the ALX/FPR2 receptor axis toward inflammation resolution in a mouse model of bacterial keratitis. Prostaglandins Other Lipid Mediat 140:18–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN (2012) Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol 180:2018–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jin Y, Arita M, Zhang Q, Saban DR, Chauhan SK, Chiang N, Serhan CN, Dana R (2009) Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Invest Ophthalmol Vis Sci 50:4743–4752

    Article  PubMed  Google Scholar 

  55. Carion TW, Ebrahim AS, Kracht D, Agrawal A, Strand E, Kaddurah O, McWhirter CR, Sosne G, Berger EA (2018) Thymosin beta-4 and ciprofloxacin adjunctive therapy improves Pseudomonas aeruginosa-induced keratitis. Cell 7

    Google Scholar 

  56. Lee JE, Sun Y, Gjorstrup P, Pearlman E (2015) Inhibition of corneal inflammation by the resolvin E1. Invest Ophthalmol Vis Sci 56:2728–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Farooq AV, Shukla D (2012) Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol 57:448–462

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lairson DR, Begley CE, Reynolds TF, Wilhelmus KR (2003) Prevention of herpes simplex virus eye disease: a cost-effectiveness analysis. Arch Ophthalmol 121:108–112

    Article  PubMed  Google Scholar 

  59. Liesegang TJ, Melton L 3rd, Daly PJ, Ilstrup DM (1989) Epidemiology of ocular herpes simplex: incidence in Rochester, minn, 1950 through 1982. Arch Ophthalmol 107:1155–1159

    Article  CAS  PubMed  Google Scholar 

  60. Souza PM, Holland EJ, Huang AJ (2003) Bilateral herpetic keratoconjunctivitis. Ophthalmology 110:493–496

    Article  PubMed  Google Scholar 

  61. Tsatsos M, MacGregor C, Athanasiadis I, Moschos MM, Jameel S, Hossain P, Anderson D (2017) Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents – comment. Clin Exp Ophthalmol 45:932

    Article  PubMed  Google Scholar 

  62. Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26:29–37

    Article  CAS  PubMed  Google Scholar 

  63. Rajasagi NK, Bhela S, Varanasi SK, Rouse BT (2017) Frontline science: aspirin-triggered resolvin D1 controls herpes simplex virus-induced corneal immunopathology. J Leukoc Biol 102:1159–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hua J, Jin Y, Chen Y, Inomata T, Lee H, Chauhan SK, Petasis NA, Serhan CN, Dana R (2014) The resolvin D1 analogue controls maturation of dendritic cells and suppresses alloimmunity in corneal transplantation. Invest Ophthalmol Vis Sci 55:5944–5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajasagi NK, Reddy PBJ, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT (2011) Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J Immunol 186:1735–1746

    Article  CAS  PubMed  Google Scholar 

  66. Serhan CN, Arita M, Hong S, Gotlinger K (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132

    Article  CAS  PubMed  Google Scholar 

  67. Rajasagi NK, Reddy PB, Mulik S, Gjorstrup P, Rouse BT (2013) Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology. Invest Ophthalmol Vis Sci 54:6269–6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ariel A, Li PL, Wang W, Tang WX, Fredman G, Hong S, Gotlinger KH, Serhan CN (2005) The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J Biol Chem 280:43079–43086

    Article  CAS  PubMed  Google Scholar 

  69. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, Petasis NA (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176:1848–1859

    Article  CAS  PubMed  Google Scholar 

  70. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN (2005) Molecular circuits of resolution: formation and actions of resolvins and protectins. J Immunol 174:4345–4355

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Srinivasan M, Gonzales CA, George C, Cevallos V, Mascarenhas JM, Asokan B, Wilkins J, Smolin G, Whitcher JP (1997) Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, South India. Br J Ophthalmol 81:965–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gopinathan U, Garg P, Fernandes M, Sharma S, Athmanathan S, Rao GN (2002) The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care center in South India. Cornea 21:555–559

    Article  PubMed  Google Scholar 

  74. Deorukhkar S, Katiyar R, Saini S (2012) Epidemiological features and laboratory results of bacterial and fungal keratitis: a five-year study at a rural tertiary-care hospital in western Maharashtra, India. Singap Med J 53:264–267

    Google Scholar 

  75. Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY, Jacobson LM, Crowell CS, Sneed RS, Lewis FM (2006) Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296:953–963

    Article  CAS  PubMed  Google Scholar 

  76. Bernal MD, Acharya NR, Lietman TM, Strauss EC, McLeod SD, Hwang DG (2006) Outbreak of Fusarium keratitis in soft contact lens wearers in San Francisco. Arch Ophthalmol 124:1051–1053

    Article  PubMed  Google Scholar 

  77. Gower EW, Keay LJ, Oechsler RA, Iovieno A, Alfonso EC, Jones DB, Colby K, Tuli SS, Patel SR, Lee SM, Irvine J, Stulting RD, Mauger TF, Schein OD (2010) Trends in fungal keratitis in the United States, 2001–2007. Ophthalmology 117:2263–2267

    Article  PubMed  Google Scholar 

  78. O’Day DM, Head WS, Robinson RD, Clanton JA (1986) Corneal penetration of topical amphotericin B and natamycin. Curr Eye Res 5:877–882

    Article  PubMed  Google Scholar 

  79. Hariprasad SM, Mieler WF, Lin TK, Sponsel WE, Graybill JR (2008) Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol 92:871–878

    Article  CAS  PubMed  Google Scholar 

  80. Walsh TJ, Pappas P, Winston DJ, Lazarus HM, Petersen F, Raffalli J, Yanovich S, Stiff P, Greenberg R, Donowitz G, Schuster M, Reboli A, Wingard J, Arndt C, Reinhardt J, Hadley S, Finberg R, Laverdière M, Perfect J, Garber G, Fioritoni G, Anaissie E, Lee J (2002) Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med 346:225–234

    Article  CAS  PubMed  Google Scholar 

  81. Walsh TJ, Pappas P, Winston DJ, Lazarus HM, Petersen F, Raffalli J, Yanovich S, Stiff P, Greenberg R, Donowitz G, Schuster M, Reboli A, Wingard J, Arndt C, Reinhardt J, Hadley S, Finberg R, Laverdiere M, Perfect J, Garber G, Fioritoni G, Anaissie E, Lee J, National Institute of, A., and Infectious Diseases Mycoses Study, G (2002) Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med 346:225–234

    Article  CAS  PubMed  Google Scholar 

  82. Durand ML (2017) Bacterial and fungal endophthalmitis. Clin Microbiol Rev 30:597–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guest JM, Singh PK, Revankar SG, Chandrasekar PH, Kumar A (2018) Isavuconazole for treatment of experimental fungal endophthalmitis caused by Aspergillus fumigatus. Antimicrob Agents Chemother 62:e01537–e01518

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shen YC, Wang CY, Tsai HY, Lee HN (2010) Intracameral voriconazole injection in the treatment of fungal endophthalmitis resulting from keratitis. Am J Ophthalmol 149:916–921

    Article  CAS  PubMed  Google Scholar 

  85. Singh PK, Kumar A, Kumar A (2014) Resolvin D1 (RvD1) promotes the resolution of inflammation and protects mice from S. aureus endophthalmitis via toll-like receptor 2 signaling. Invest Ophthalmol Vis Sci 55:3575–3575

    Article  CAS  Google Scholar 

  86. Chiang N, Fredman G, Backhed F, Oh SF, Vickery T, Schmidt BA, Serhan CN (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484:524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eguchi H, Hiura A, Nakagawa H, Kusaka S, Shimomura Y (2017) Corneal nerve fiber structure, its role in corneal function, and its changes in corneal diseases. Biomed Res Int 2017:3242649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Muller RT, Abedi F, Cruzat A, Witkin D, Baniasadi N, Cavalcanti BM, Jamali A, Chodosh J, Dana R, Pavan-Langston D, Hamrah P (2015) Degeneration and regeneration of subbasal corneal nerves after infectious keratitis: a longitudinal in vivo confocal microscopy study. Ophthalmology 122:2200–2209

    Article  PubMed  Google Scholar 

  89. Cruzat A, Qazi Y, Hamrah P (2017) In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf 15:15–47

    Article  PubMed  Google Scholar 

  90. Mastropasqua L, Massaro-Giordano G, Nubile M, Sacchetti M (2017) Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves. J Cell Physiol 232:717–724

    Article  CAS  PubMed  Google Scholar 

  91. Cortina MS, He J, Li N, Bazan NG, Bazan HE (2010) Neuroprotectin D1 synthesis and corneal nerve regeneration after experimental surgery and treatment with PEDF plus DHA. Invest Ophthalmol Vis Sci 51:804–810

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pham TL, He J, Kakazu AH, Jun B, Bazan NG, Bazan HEP (2017) Defining a mechanistic link between pigment epithelium–derived factor, docosahexaenoic acid, and corneal nerve regeneration. J Biol Chem 292:18486–18499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kenchegowda S, He J, Bazan HE (2013) Involvement of pigment epithelium-derived factor, docosahexaenoic acid and neuroprotectin D1 in corneal inflammation and nerve integrity after refractive surgery. Prostaglandins Leukot Essent Fatty Acids 88:27–31

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berger, E.A. (2019). Understanding the Role of Pro-resolving Lipid Mediators in Infectious Keratitis. In: Honn, K., Zeldin, D. (eds) The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases. Advances in Experimental Medicine and Biology, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-21735-8_2

Download citation

Publish with us

Policies and ethics