Skip to main content

Clinical Functions of Regenerative Dentistry and Tissue Engineering in Treatment of Oral and Maxillofacial Soft Tissues

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry

Abstract

Recent advancements in tissue engineering have created many promising innovative possibilities for oral and maxillofacial soft tissue reconstruction. Developments in tissue and organ 3D printing reconstruction technology have been made possible through the use of scaffolds that are highly specific and closely related to affected oral and maxillofacial areas. These developments have allowed for a significant evolution in tissue engineering. The most important characteristics of this method are the avoidance of secondary surgeries post-graft preparation, unrestricted amount of tissue augmentation, and the utilization of precisely designed scaffolds that mimic the damaged tissue. Said engineered structures are composed of either natural or synthetic materials, which can be combined with the recipient’s stem cells. Although many in vivo and in vitro studies have been conducted on the mechanisms and results of this method, which proves its efficiency, further studies are required to investigate additional functions and utilization techniques.

The main purpose of this chapter is to review the clinical applications of tissue engineering in regeneration and reconstruction of the soft tissues associated with oral and maxillofacial region including oral mucosa, skeletal muscle, and osteochondral and nervous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah, G., & Costello, B. J. (2017). Soft tissue regeneration incorporating 3-dimensional biomimetic scaffolds. Oral and Maxillofacial Surgery Clinics of North America, 29(1), 9–18.

    Article  Google Scholar 

  2. Kim, R. Y., Fasi, A. C., & Feinberg, S. E. (2014). Soft tissue engineering in craniomaxillofacial surgery. Ann Maxillofac Surg, 4(1), 4–8.

    Article  Google Scholar 

  3. Costello, B. J., et al. (2010). Regenerative medicine for craniomaxillofacial surgery. Oral and Maxillofacial Surgery Clinics of North America, 22(1), 33–42.

    Article  Google Scholar 

  4. Susarla, S. M., Swanson, E., & Gordon, C. R. (2011). Craniomaxillofacial reconstruction using allotransplantation and tissue engineering: Challenges, opportunities, and potential synergy. Annals of Plastic Surgery, 67(6), 655–661.

    Article  Google Scholar 

  5. Evans, E. W. (2017). Treating scars on the oral mucosa. Facial Plastic Surgery Clinics of North America, 25(1), 89–97.

    Article  Google Scholar 

  6. Izumi, K., Song, J., & Feinberg, S. E. (2004). Development of a tissue-engineered human oral mucosa: From the bench to the bed side. Cells, Tissues, Organs, 176(1–3), 134–152.

    Article  Google Scholar 

  7. Scheller, E., Krebsbach, P., & Kohn, D. (2009). Tissue engineering: State of the art in oral rehabilitation. Journal of Oral Rehabilitation, 36(5), 368–389.

    Article  Google Scholar 

  8. Izumi, K., Kato, H., & Feinberg, S. E. (2015). Tissue engineered oral mucosa. In Stem cell biology and tissue engineering in dental sciences (pp. 721–731). Elsevier.

    Google Scholar 

  9. Kato, H., et al. (2015). Fabrication of large size ex vivo-produced oral mucosal equivalents for clinical application. Tissue Engineering. Part C, Methods, 21(9), 872–880.

    Article  Google Scholar 

  10. Izumi, K., Neiva, R. F., & Feinberg, S. E. (2013). Intraoral grafting of tissue-engineered human oral mucosa. The International Journal of Oral & Maxillofacial Implants, 28(5), e295–e303.

    Article  Google Scholar 

  11. Kriegebaum, U., et al. (2012). Tissue engineering of human oral mucosa on different scaffolds: In vitro experiments as a basis for clinical applications. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 114(5 Suppl), S190–S198.

    Article  Google Scholar 

  12. Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.

    Article  Google Scholar 

  13. Girard, D., et al. (2017). Biotechnological management of skin burn injuries: Challenges and perspectives in wound healing and sensory recovery. Tissue Engineering Part B: Reviews, 23(1), 59–82.

    Article  Google Scholar 

  14. Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing—A review. Journal of Pharmaceutical Sciences, 104(11), 3653–3680.

    Article  Google Scholar 

  15. Parani, M., et al. (2016). Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Applied Materials & Interfaces, 8(16), 10049–10069.

    Article  Google Scholar 

  16. Wong, S. Y., Manikam, R., & Muniandy, S. (2015). Prevalence and antibiotic susceptibility of bacteria from acute and chronic wounds in Malaysian subjects. The Journal of Infection in Developing Countries, 9(09), 936–944.

    Article  Google Scholar 

  17. Naseri-Nosar, M., & Ziora, Z. M. (2018). Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydrate Polymers, 189, 379.

    Article  Google Scholar 

  18. Merei, J. M. (2004). Pediatric clean surgical wounds: Is dressing necessary? Journal of Pediatric Surgery, 39(12), 1871–1873.

    Article  Google Scholar 

  19. Mirzania, H. and S. Abbasifard, The effect of dressing in surgical wound complications. 2006.

    Google Scholar 

  20. Archana, D., Dutta, J., & Dutta, P. (2013). Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. International Journal of Biological Macromolecules, 57, 193–203.

    Article  Google Scholar 

  21. Farzamfar, S., et al. (2017). Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. Journal of Bioactive and Compatible Polymers, 0883911517737103.

    Google Scholar 

  22. Mano, J., et al. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of the Royal Society Interface, 4(17), 999–1030.

    Article  Google Scholar 

  23. Sulaeva, I., et al. (2015). Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnology Advances, 33(8), 1547–1571.

    Article  Google Scholar 

  24. Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings: A short review. Biomaterials and Artificial Organs, 18(1), 18–23.

    Google Scholar 

  25. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings–a review. Biomedicine, 5(4), 22.

    Article  Google Scholar 

  26. Mir, M., et al. (2018). Synthetic polymeric biomaterials for wound healing: A review. Progress in Biomaterials, 7, 1–21.

    Article  Google Scholar 

  27. Farokhi, M., et al. (2018). Overview of silk fibroin use in wound dressings. Trends in Biotechnology, 36, 907.

    Article  Google Scholar 

  28. Schmalbruch, H., & Lewis, D. (2000). Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 23(4), 617–626.

    Article  Google Scholar 

  29. Huard, J., Li, Y., & Fu, F. H. (2002). Muscle injuries and repair: Current trends in research. JBJS, 84(5), 822–832.

    Article  Google Scholar 

  30. Järvinen, T. A., et al. (2000). Muscle strain injuries. Current Opinion in Rheumatology, 12(2), 155–161.

    Article  Google Scholar 

  31. Yang, W., & Hu, P. (2018). Skeletal muscle regeneration is modulated by inflammation. Journal of Orthopaedic Translation, 13, 25.

    Article  Google Scholar 

  32. Klumpp, D., et al. (2010). Engineering skeletal muscle tissue–new perspectives in vitro and in vivo. Journal of Cellular and Molecular Medicine, 14(11), 2622–2629.

    Article  Google Scholar 

  33. Grasman, J. M., et al. (2015). Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 25, 2–15.

    Article  Google Scholar 

  34. Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9(2), 493.

    Article  Google Scholar 

  35. Chang, N. C., & Rudnicki, M. A. (2014). Satellite cells: the architects of skeletal muscle. Current Topics in Developmental Biology 107, 161–181.

    Google Scholar 

  36. Madaro, L., & Bouché, M. (2014). From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: The role of lymphocytes. BioMed Research International, 2014, 1.

    Article  Google Scholar 

  37. Judson, R. N., Zhang, R. H., & Rossi, F. (2013). Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: Collaborators or saboteurs? The FEBS Journal, 280(17), 4100–4108.

    Article  Google Scholar 

  38. Joe, A. W., et al. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 12(2), 153.

    Article  Google Scholar 

  39. Uezumi, A., et al. (2011). Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science, 124(21), 3654–3664.

    Article  Google Scholar 

  40. Klimczak, A., Kozlowska, U., & Kurpisz, M. (2018). Muscle stem/progenitor cells and mesenchymal stem cells of bone marrow origin for skeletal muscle regeneration in muscular dystrophies. Archivum Immunologiae et Therapiae Experimentalis 66(5), 341–354.

    Google Scholar 

  41. Stern-Straeter, J., et al. (2007). Advances in skeletal muscle tissue engineering. In Vivo, 21(3), 435–444.

    Google Scholar 

  42. Koning, M., et al. (2009). Current opportunities and challenges in skeletal muscle tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 3(6), 407–415.

    Article  Google Scholar 

  43. Ostrovidov, S., et al. (2014). Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications. Tissue Engineering Part B: Reviews, 20(5), 403–436.

    Article  Google Scholar 

  44. Saxena, A. K., et al. (1999). Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: Preliminary studies. Tissue Engineering, 5(6), 525–531.

    Article  Google Scholar 

  45. Sicari, B. M., et al. (2014). An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Science Translational Medicine, 6(234), 234ra58–234ra58.

    Article  Google Scholar 

  46. Page, R. L., et al. (2011). Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads. Tissue Engineering Part A, 17(21–22), 2629–2640.

    Article  Google Scholar 

  47. Borselli, C., et al. (2010). Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proceedings of the National Academy of Sciences, 107(8), 3287–3292.

    Article  Google Scholar 

  48. San Choi, J., et al. (2008). The influence of electrospun aligned poly (ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials, 29(19), 2899–2906.

    Article  Google Scholar 

  49. Kroehne, V., et al. (2008). Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. Journal of Cellular and Molecular Medicine, 12(5a), 1640–1648.

    Article  Google Scholar 

  50. Bayram, B., et al. (2018). Effects of platelet-rich fibrin membrane on sciatic nerve regeneration. Journal of Craniofacial Surgery, 29(3), e239–e243.

    Google Scholar 

  51. Noble, J., et al. (1998). Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. Journal of Trauma and Acute Care Surgery, 45(1), 116–122.

    Article  Google Scholar 

  52. Dubový, P. (2011). Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Annals of Anatomy-Anatomischer Anzeiger, 193(4), 267–275.

    Article  Google Scholar 

  53. Gaudet, A. D., Popovich, P. G., & Ramer, M. S. (2011). Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, 8(1), 110.

    Article  Google Scholar 

  54. Ghayour, M. B., Abdolmaleki, A., & Fereidoni, M. (2015). Use of stem cells in the regeneration of peripheral nerve injuries: An overview (Vol. 3, p. 84).

    Google Scholar 

  55. Hall, S. (2001). Nerve repair: a neurobiologist’s view. Journal of hand surgery, 26(2), 129–136.

    Article  Google Scholar 

  56. Ide, C. (1996). Peripheral nerve regeneration. Neuroscience Research, 25(2), 101–121.

    Article  MathSciNet  Google Scholar 

  57. Ayala-Caminero, R., et al. (2017). Polymeric scaffolds for three-dimensional culture of nerve cells: A model of peripheral nerve regeneration. MRS Communications, 7(3), 391–415.

    Article  Google Scholar 

  58. Siemionow, M., & Sonmez, E. (2007). Nerve allograft transplantation: A review. Journal of Reconstructive Microsurgery, 23(08), 511–520.

    Article  Google Scholar 

  59. Chung, J.-R., et al. (2017). Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration. Journal of dental anesthesia and pain medicine, 17(3), 191–198.

    Article  Google Scholar 

  60. Pfister, B. J., et al. (2011). Biomedical engineering strategies for peripheral nerve repair: Surgical applications, state of the art, and future challenges. Critical Reviewsâ„¢ in Biomedical Engineering, 39(2), 81.

    Article  MathSciNet  Google Scholar 

  61. Colen, K. L., Choi, M., & Chiu, D. T. (2009). Nerve grafts and conduits. Plastic and Reconstructive Surgery, 124(6S), e386–e394.

    Article  Google Scholar 

  62. Hadlock, T., et al. (1998). A tissue-engineered conduit for peripheral nerve repair. Archives of Otolaryngology–Head & Neck Surgery, 124(10), 1081–1086.

    Article  Google Scholar 

  63. Gu X., Ding F., Yang Y., Liu J., So K. F., & Xu X. M. (2015). Tissue engineering in peripheral nerve regeneration. In So K. F., & Xu X. M. (Eds). Neural Regeneration (pp. 73–99), Oxford: Academic Press.

    Google Scholar 

  64. Chang, W., et al. (2018). Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Acta Biomaterialia, 73, 302.

    Article  Google Scholar 

  65. Rutka, J. T., et al. (1988). The extracellular matrix of the central and peripheral nervous systems: Structure and function. Journal of Neurosurgery, 69(2), 155–170.

    Article  Google Scholar 

  66. Carbonetto, S. (1984). The extracellular matrix of the nervous system. Trends in Neurosciences, 7(10), 382–387.

    Article  Google Scholar 

  67. Painter, P. C., & Coleman, M. M. (2008). Essentials of polymer science and engineering. DEStech Publications, Lancaster.

    Google Scholar 

  68. Gu, X., Ding, F., & Williams, D. F. (2014). Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 35(24), 6143–6156.

    Article  Google Scholar 

  69. di Summa, P. G., et al. (2010). Adipose-derived stem cells enhance peripheral nerve regeneration. Journal of Plastic, Reconstructive & Aesthetic Surgery, 63(9), 1544–1552.

    Article  Google Scholar 

  70. Azizi, S. A., et al. (1998). Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—Similarities to astrocyte grafts. Proceedings of the National Academy of Sciences, 95(7), 3908–3913.

    Article  Google Scholar 

  71. Tavassoli, A., et al. (2010). In vitro experimental study of interactions between blastema tissue and three-dimensional matrix derived from bovine cancellous bone and articular cartilage. Journal of cell and tissue, 1(1), 53–62.

    Google Scholar 

  72. Spencer, V., et al. (2018). Osteochondral tissue engineering: Translational research and turning research into products. Advances in Experimental Medicine and Biology, 1058, 373–390.

    Article  Google Scholar 

  73. Giannini, S., et al. (2013). One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. The American Journal of Sports Medicine, 41(3), 511–518.

    Article  Google Scholar 

  74. Ribeiro, V. P., et al. (2018). Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration. Advances in Experimental Medicine and Biology, 1058, 305–325.

    Article  Google Scholar 

  75. Nukavarapu, S. P., & Dorcemus, D. L. (2013). Osteochondral tissue engineering: Current strategies and challenges. Biotechnology Advances, 31(5), 706–721.

    Article  Google Scholar 

  76. Chen, G., & Kawazoe, N. (2018). Porous scaffolds for regeneration of cartilage, bone and Osteochondral tissue.. Advances in experimental medicine and biology (Vol. 1058, pp. 171–191).

    Google Scholar 

  77. Dormer, N. H., Berkland, C. J., & Detamore, M. S. (2010). Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Annals of Biomedical Engineering, 38(6), 2121–2141.

    Article  Google Scholar 

  78. Swieszkowski, W., et al. (2007). Repair and regeneration of osteochondral defects in the articular joints. Biomolecular Engineering, 24(5), 489–495.

    Article  Google Scholar 

  79. Canadas, R. F., Pina S., Marques A. P., et al (2016). Cartilage and bone regeneration—how close are we to bedside? In: Transl. Regen. Med. to Clin, (pp. 89–106). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  80. Lutolf, M., & Hubbell, J. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 23(1), 47.

    Article  Google Scholar 

  81. Nair, L. S., & Laurencin, C. T. (2005). Polymers as biomaterials for tissue engineering and controlled drug delivery. In Tissue engineering I (pp. 47–90). Springer, Berlin, Heidelberg.

    Google Scholar 

  82. Benders, K. E., et al. (2013). Extracellular matrix scaffolds for cartilage and bone regeneration. Trends in Biotechnology, 31(3), 169–176.

    Article  Google Scholar 

  83. Oliveira, J. T., & Reis, R. (2011). Polysaccharide-based materials for cartilage tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 5(6), 421–436.

    Article  Google Scholar 

  84. Ge, Z., Jin, Z., & Cao, T. (2008). Manufacture of degradable polymeric scaffolds for bone regeneration. Biomedical Materials, 3(2), 022001.

    Article  Google Scholar 

  85. Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491.

    Article  Google Scholar 

  86. Habibovic, P., et al. (2005). 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 26(17), 3565–3575.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamalpour, M.R., Vahdatinia, F., Vargas, J., Tayebi, L. (2020). Clinical Functions of Regenerative Dentistry and Tissue Engineering in Treatment of Oral and Maxillofacial Soft Tissues. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics