Skip to main content

Conformance Test Cases for the RDF Mapping Language (RML)

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2019)

Abstract

Knowledge graphs are often generated using rules that apply semantic annotations to data sources. Software tools then execute these rules and generate or virtualize the corresponding RDF-based knowledge graph. RML is an extension of the W3C-recommended R2RML language, extending support from relational databases to other data sources, such as data in CSV, XML, and JSON format. As part of the R2RML standardization process, a set of test cases was created to assess tool conformance the specification. In this work, we generated an initial set of reusable test cases to assess RML conformance. These test cases are based on R2RML test cases and can be used by any tool, regardless of the programming language. We tested the conformance of two RML processors: the RMLMapper and CARML. The results show that the RMLMapper passes all CSV, XML, and JSON test cases, and most test cases for relational databases. CARML passes most CSV, XML, and JSON test cases regarding. Developers can determine the degree of conformance of their tools, and users determine based on conformance results to determine the most suitable tool for their use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    RMLMapper, https://github.com/RMLio/rmlmapper-java.

  2. 2.

    CARML, https://github.com/carml/carml.

  3. 3.

    Ontario, https://github.com/WDAqua/Ontario.

  4. 4.

    DB2triples, https://github.com/antidot/db2triples.

  5. 5.

    R2RMLParser, https://github.com/nkons/r2rml-parser.

  6. 6.

    Morph-RDB, https://github.com/oeg-upm/morph-rdb.

  7. 7.

    Ontop, https://github.com/ontop/ontop.

  8. 8.

    PostGIS, https://postgis.net/.

  9. 9.

    MonetDB, https://www.monetdb.org/.

  10. 10.

    https://www.w3.org/2001/sw/DataAccess/tests/r2.

  11. 11.

    http://www.w3.org/TR/rdf11-testcases/.

  12. 12.

    http://w3c.github.io/data-shapes/data-shapes-test-suite/.

  13. 13.

    https://www.w3.org/TR/2012/NOTE-rdb2rdf-test-cases-20120814/.

  14. 14.

    http://purl.org/NET/rdb2rdf-test#.

  15. 15.

    https://www.w3.org/TR/2005/NOTE-test-metadata-20050914/.

  16. 16.

    https://www.w3.org/TR/EARL10/.

  17. 17.

    https://www.mysql.com/.

  18. 18.

    https://www.postgresql.org/.

  19. 19.

    https://www.microsoft.com/en-us/sql-server/.

  20. 20.

    http://rml.io/test-cases/#datamodel.

  21. 21.

    https://www.w3.org/TR/EARL10/, with prefix earl.

  22. 22.

    http://www.w3.org/2001/sw/DataAccess/tests/test-manifest#, with prefix mf.

  23. 23.

    https://www.w3.org/2006/03/test-description#, with prefix test.

  24. 24.

    https://www.w3.org/TR/vocab-dcat/, with prefix dcat.

  25. 25.

    http://rml.io/ns/test-cases, with prefix rml-tc.

  26. 26.

    https://www.w3.org/TR/r2rml/#inverse.

  27. 27.

    https://www.w3.org/TR/r2rml/#dfn-natural-rdf-literal.

References

  1. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 167–195 (2015)

    Google Scholar 

  2. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. Recommendation. World Wide Web Consortium (W3C), February 2014. http://www.w3.org/TR/rdf11-concepts/

  3. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language. W3C Recommendation. W3C (2012). http://www.w3.org/TR/r2rml/

  4. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. In: Web Semantics: Science, Services and Agents on the WWW (2013). ISSN 1570-8268. https://doi.org/10.1016/j.websem.2013.08.002. http://www.sciencedirect.com/science/article/pii/S1570826813000383

    Article  Google Scholar 

  5. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: 23rd International Conference on WWW (2014). ISBN 978-1-4503-2744-2

    Google Scholar 

  6. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8, 471–487 (2017)

    Article  Google Scholar 

  7. Bischof, S., et al.: Mapping between RDF and XML with XSPARQL. J. Data Semant. (2012). ISSN 1861-2040. https://doi.org/10.1007/s13740-012-0008-7

    Article  Google Scholar 

  8. Villazón-Terrazas, B., Hausenblas, M.: RDB2RDF Implementation Report. W3C Note. W3C (2012). https://www.w3.org/TR/rdb2rdf-implementations/

  9. Dimou, A., et al.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: LDOW (2014)

    Google Scholar 

  10. Michel, F., et al.: Translation of relational and non-relational databases into RDF with xR2RML. In: WEBIST (2015)

    Google Scholar 

  11. Kyzirakos, K., et al.: GeoTriples: transforming geospatial data into RDF graphs using R2RML and RML mappings. J. Web Semant. 52, 16–32 (2018)

    Article  Google Scholar 

  12. Konstantinou, N., et al.: Exposing scholarly information as Linked Open Data: RDFizing DSpace contents. Electron. Libr. 32(6), 834–851 (2014). https://doi.org/10.1108/EL-12-2012-0156

    Article  Google Scholar 

  13. Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)

    Article  Google Scholar 

  14. Dimou, A., et al.: Machine-interpretable dataset and service descriptions for heterogeneous data access and retrieval. In: Proceedings of the 11th International Conference on Semantic Systems, SEMANTICS 2015. ACM (2015). ISBN 978-1-4503-3462-4. https://doi.org/10.1145/2814864.2814873

  15. Chaves-Fraga, D., et al.: Virtual statistics knowledge graph generation from CSV files. In: Emerging Topics in Semantic Technologies: ISWC 8 Satellite Events. Studies on the Semantic Web, vol. 36, pp. 235–244. IOS Press (2018)

    Google Scholar 

  16. Battle, R., Kolas, D.: GeoSPARQL: enabling a geospatial semantic web. Semant. Web J. 3(4), 355–370 (2011)

    Google Scholar 

  17. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_29

    Chapter  Google Scholar 

  18. Vidal, M.-E., Endris, K.M., Jozashoori, S., Karim, F., Palma, G.: Semantic data integration of big biomedical data for supporting personalised medicine. In: Alor-Hernández, G., Sánchez-Cervantes, J.L., Rodríguez-González, A., Valencia-García, R. (eds.) Current Trends in Semantic Web Technologies: Theory and Practice. SCI, vol. 815, pp. 25–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06149-4_2

    Chapter  Google Scholar 

  19. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Recommendation. World Wide Web Consortium (W3C), March 2013. https://www.w3.org/TR/sparql11-query/

  20. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). Recommendation. World Wide Web Consortium (W3C) (2017). https://www.w3.org/TR/shacl/

  21. Arenas, M., et al.: A Direct Mapping of Relational Data to RDF. W3C Recommendation. W3C, September 2012. https://www.w3.org/TR/rdb-direct-mapping/

  22. Villazón-Terrazas, B., Hausenblas, M.: R2RML and Direct Mapping Test Cases. W3C Note. W3C (2012). http://www.w3.org/TR/rdb2rdf-test-cases/

  23. Dimou, A., et al.: What factors influence the design of a linked data generation algorithm? In: Berners-Lee, T., et al. (eds.) Proceedings of the 11th Workshop on Linked Data on the Web, April 2018. http://events.linkeddata.org/ldow2018/papers/LDOW2018_paper_12.pdf

Download references

Acknowledgements

The described research activities were funded by Ghent University, imec, Flanders Innovation & Entrepreneurship (AIO), the Research Foundation – Flanders (FWO), and the European Union. The work presented in this paper is partially supported by the Spanish Ministerio de Economía, Industria y Competitividad and EU FEDER funds under the DATOS 4.0: RETOS Y SOLUCIONES - UPM Spanish national project (TIN2016-78011-C4-4-R) and by an FPI grant (BES-2017-082511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Heyvaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heyvaert, P. et al. (2019). Conformance Test Cases for the RDF Mapping Language (RML). In: Villazón-Terrazas, B., Hidalgo-Delgado, Y. (eds) Knowledge Graphs and Semantic Web. KGSWC 2019. Communications in Computer and Information Science, vol 1029. Springer, Cham. https://doi.org/10.1007/978-3-030-21395-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21395-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21394-7

  • Online ISBN: 978-3-030-21395-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics