Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1001))

  • 911 Accesses

Abstract

In the context of linear regression models, it is well-known that the ordinary least squares estimator is very sensitive to outliers whereas the least absolute deviations (LAD) is an alternative method to estimate the known regression coefficients. Selecting significant variables is very important; however, by choosing these variables some information may be sacrificed. To prevent this, in our proposal, we can combine the full model estimates toward the candidate sub-model, resulting in improved estimators in risk sense. In this article, we consider shrinkage estimators in a sparse linear regression model and study their relative asymptotic properties. Advantages of the proposed estimators over the usual LAD estimator are demonstrated through a Monte Carlo simulation as well as a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.E.: Penalty, Shrinkage and Pretest Estimation Strategies: Variable Selection and Estimation. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Ahmed, S.E., Hossain, S., Doksum, A.: Lasso and shrinkage estimation in weibull censored regression models. J. Stat. Plan. Inference 142(6), 1273–1284 (2012)

    Article  MathSciNet  Google Scholar 

  3. Ahmed, S.E., Hussein, A.A., Sen, P.K.: Risk comparison of some shrinkage m-estimators in linear models. J. Nonparametric Stat. 18(4–6), 401–415 (2006)

    Article  MathSciNet  Google Scholar 

  4. Arashi, M., Norouzirad, M., Ahmed, S.E., Yüzbaşı, B.: Rank-based LIU regression. Comput. Stat. 1–37 (2018)

    Google Scholar 

  5. Barro, R., Lee, J.W.: Dataset for a panel of 138 countries discussion paper (1994)

    Google Scholar 

  6. Bassett, G., Koenker, R.: Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 78(363), 618–622 (1978)

    Article  MathSciNet  Google Scholar 

  7. Hossain, S., Ahmed, S.E.: Shrinkage and penalty estimators of a poisson regression model. Aust. N. Z. J. Stat. 54(3), 359–373 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hurvish, C.M., Tsai, C.L.: Model selection for least absolute deviations regression in small samples. Stat. Probab. Lett. 9(3), 259–265 (1990)

    Article  MathSciNet  Google Scholar 

  9. Koenker, R.: Quantreg: Quantile Regression. R Package Version 5.19 (2015)

    Google Scholar 

  10. Lawless, J.F., Singhal, K.: Efficient screening of nonnormal regression models. Biometrics 34(3), 318–327 (1978)

    Article  Google Scholar 

  11. Montgomery, D.C., Peck, E.A., Vinig, G.G.: Introduction to Linear Regression Analysis, 3rd edn. Wiley, New York (2011)

    Google Scholar 

  12. Saleh, A.K.M.E.: Theory of Preliminary Test and Stein-Type Estimation with Applications. Wiley, New York (2006)

    Book  Google Scholar 

  13. Sen, P.K., Saleh, A.K.M.E.: On preliminary and shrinkage M-estimation in linear model. Ann. Stat. 15, 1580–1592 (1987)

    Article  MathSciNet  Google Scholar 

  14. Shumway, R.H., Azari, A.S., Pawitan, Y.: Modeling mortality fluctuations in Los Angeles as functions of pollution and weather effects. Environ. Res. 45(2), 224–241 (1988)

    Article  Google Scholar 

  15. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Yüzbaşı, B., Ahmed, S.E., Güngör, M.: Improved penalty strategies in linear regression models. REVSTAT-Stat. J. 15(2), 251–276 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Yüzbaşı, B., Aşar, Y., Şık, Ş., Demiralp, A.: Improving estimations in quantile regression model with autoregressive errors. Therm. Sci. 22(1), S97–S107 (2018)

    Article  Google Scholar 

  18. Wang, H., Li, G., Jiang, G.: Robust regression shrinkage and consistent variable selection through the lad-lasso. J. Bus. Econ. Stat. 25(3), 347–355 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers for constructive comments which significantly improved the presentation of the paper. M. Arashi’s research is supported in part by the National Research Foundation of South Africa (ref. IFR170227223754 grant number 109214). Prof. S. Ejaz Ahmed is supported by the Natural Sciences and the Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahadır Yüzbaşı .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 1

[6] Whenever the assumptions (A) and (B) hold, \(\sqrt{n}(\hat{\varvec{\beta }}^{F}-\varvec{\beta })\) convergences in distribution to a p-dimensional normal distribution with mean \(\varvec{0}\) and covariance matrix \(\tau ^2 \varvec{C}^{-1}\), where \(\tau ^2\) is the asymptotic variance of the sample median of symmetric F distribution with median 0, i.e. \(\tau ^2=[2f(0)]^{-2}\). On the other hand,

$$\begin{aligned} \sqrt{n}\left( \hat{\varvec{\beta }}^{F}-\varvec{\beta }\right) \overset{d}{\rightarrow }\mathscr {N}_p \left( \varvec{0}, \tau ^2 \varvec{C}^{-1}\right) . \end{aligned}$$
(17)

Corollary 1

Assume (A) and (B) are held, thus

$$\begin{aligned} \hat{\varvec{\beta }}_1^{F}\sim & {} \mathscr {N}_{p_1}\left( \varvec{\beta }_1,\tau ^2 \varvec{C}_{11.2}^{-1} \right) ,\end{aligned}$$
(18)
$$\begin{aligned} \hat{\varvec{\beta }}_2^{F}\sim & {} \mathscr {N}_{q} \left( \varvec{\beta }_2, \tau ^2 \varvec{C}_{22.1}^{-1}\right) . \end{aligned}$$
(19)

Proof

Suppose that the matrix \(\varvec{x}\) is partitioned as \(\varvec{X}_1\) and \(\varvec{X}_2\) with sizes \(n\times p_1\) and \(n\times p_2\), respectively. Accordingly, \(\varvec{\mu }\) and \(\varvec{\Sigma }\) partitioned as follows:

$$\begin{aligned} \varvec{\mu }=\begin{bmatrix} \varvec{\mu }_1 \\ \varvec{\mu }_2 \end{bmatrix}\quad \text {with dimension} \begin{bmatrix} p_1\times 1 \\ p_2 \times 1 \end{bmatrix}, \end{aligned}$$

and

$$\begin{aligned} \varvec{\Sigma }=\begin{bmatrix} \varvec{\Sigma }_{11}&\varvec{\Sigma }_{12}\\ \varvec{\Sigma }_{21}&\varvec{\Sigma }_{22} \end{bmatrix} \quad \text {with dimension} \quad \begin{bmatrix} p_1\times p_1&p_1\times p_2\\ p_2 \times p_1&p_2 \times p_2 \end{bmatrix}. \end{aligned}$$

Now, based on assumption (A) consider the covariance matrix as \(\tau ^2 \varvec{C}^{-1}\). Using Schure complement, the inverted blockwise is as below

$$\begin{aligned} \varvec{\Sigma }^{-1} = \tau ^2\begin{bmatrix} \varvec{C}_{11.2}^{-1}&-\varvec{C}_{11.2}^{-1}\varvec{C}_{12}\varvec{C}_{22}^{-1}\\ -\varvec{C}_{22.1}^{-1} \varvec{C}_{21} \varvec{C}_{11}^{-1}&\varvec{C}_{22.1}^{-1} \end{bmatrix}. \end{aligned}$$
(20)

Base on Lemma 1, the result is concluded.

Proof

(Theorem 1). Based on Eq. (19), we can construct Hotelling’s T-squared statistic as

$$\begin{aligned} \frac{\left( \hat{\varvec{\beta }}_2^{F}-\varvec{\beta }_2\right) ^T \varvec{C}_{22.1} \left( \hat{\varvec{\beta }}_2^{F}-\varvec{\beta }_2\right) }{\tau ^2}, \end{aligned}$$
(21)

which follows of a \(\chi ^2\)-distribution with \(p_2\) d.f. and non-centrality parameter \(\varDelta \). Under the null hypothesis, the test statistic, \(\mathscr {L}_n\), is a central \(\chi ^2\) distribution with \(p_2\) d.f.

Proof

(Theorem 2). The first equation is derived from (18). To obtain the asymptotic distribution of the restricted LAD estimator and complete the proof, we must use the conditional normal \(\left( \hat{\varvec{\beta }}^{F}_1|\hat{\varvec{\beta }}_2^{F}=\varvec{\beta }_2=\varvec{0}\right) \).

The distribution \(X_1|X_2=x_2\) is

$$\begin{aligned} \mathscr {N}_{p_1-p_2}\left( \varvec{\mu }_1+\varvec{C}_{12}\varvec{C}_{22}^{-1}(x_2-\varvec{\mu }_2), \varvec{C}_{11}-\varvec{C}_{12}\varvec{C}_{22}^{-1}\varvec{C}_{21} \right) . \end{aligned}$$
(22)

Now, with substituting the Eqs. (18)–(20) into (22) the result is obtained.

The mean vector is as

$$\begin{aligned} \varvec{\beta }_1+\left( -\varvec{C}_{11.2}^{-1}\varvec{C}_{12}\varvec{C}_{22}^{-1}\right) \left( \varvec{C}_{22.1}^{-1}\right) ^{-1}(\varvec{\beta }_2 -\varvec{\beta }_2)=\varvec{\beta }_1. \end{aligned}$$
(23)

Also, the covariance matrix has the form

$$\begin{aligned} \mathrm{Cov}\left( \hat{\varvec{\beta }}_1^{F}|\hat{\varvec{\beta }}_2^{F}=\varvec{\beta }_2 = \varvec{0}\right)= & {} \varvec{C}_{11.2}^{-1}-\left( -\varvec{C}_{11.2}^{-1}\varvec{C}_{12}\varvec{C}_{22}^{-1}\right) \varvec{C}_{22.1}\left( -\varvec{C}_{22.1}^{-1}\varvec{C}_{21}\varvec{C}_{11}^{-1}\right) \\= & {} \varvec{C}_{11.2}^{-1}-\varvec{C}_{11.2}^{-1}\varvec{C}_{12}\varvec{C}_{22}^{-1}\varvec{C}_{21}\varvec{C}_{11}^{-1}. \end{aligned}$$
(24)

Using this fact that \(\varvec{C}_{12}\varvec{C}_{22}^{-1}\varvec{C}_{21}=\varvec{C}_{11}-\varvec{C}_{11.2}\), the Eq. (24) equals to

$$\begin{aligned} \varvec{C}_{11.2}^{-1}-\varvec{C}_{11.2}^{-1}\left( \varvec{C}_{11}-\varvec{C}_{11.2}\right) \varvec{C}_{11}^{-1}= & {} \varvec{C}_{11.2}^{-1}-\varvec{C}_{11.2}^{-1}+\varvec{C}_{11}^{-1}.\\= & {} \varvec{C}_{11}^{-1}. \end{aligned}$$
(25)

The proof is complete.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yüzbaşı, B., Ahmed, S.E., Arashi, M., Norouzirad, M. (2020). LAD, LASSO and Related Strategies in Regression Models. In: Xu, J., Ahmed, S., Cooke, F., Duca, G. (eds) Proceedings of the Thirteenth International Conference on Management Science and Engineering Management. ICMSEM 2019. Advances in Intelligent Systems and Computing, vol 1001. Springer, Cham. https://doi.org/10.1007/978-3-030-21248-3_32

Download citation

Publish with us

Policies and ethics