Skip to main content

Abstract

The aim of this study is to apply an object-based approach using multi-time series of high (Spot-5 images) and medium (ETM of Landsat, OLI TIRS of Landast and MSS of Landsat images) spatial resolution to characterize Land Cover of a heterogeneous territory, called Loukkos river basin which is a part of the western area of the Rifean belt. The images segmentation tests regarding several combinations between color levels (0.1–0.9) and scales (0–255) have confirmed a strong relationship among the spectral values of images radiance, with respect to the number of objects. Indeed, the authors have concluded that this relationship, is more strongly related to the values of the Standard Deviation of the images. The “Map difference” used to assess the accuracy of mapping is made less complicated and more accurate to the classical probabilistic methods. Furthermore, the overall accuracy of the Object-Oriented Classification was 80.20%. The study has shown that farmlands have been undergone more changes than urban classes, followed by wetlands and grasslands those have been converted to agricultural lands and lastly the transformation of forests to farmland and natural vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achbun, A., Mansour, M., Layelman, M., & Smiej, F. (2011). Etude comparative de la classification orientée objet d’une image spot5 pour la cartographie de l’occupation du sol via eCognition\(^{\textregistered }\) 9, Géoobservateur, 19. ArcGis 10, help. http://help.arcgis.com/en/arcgisdestop/10.0/help/.

  2. Mastere, M., Van Vliet Lanoë, B., & Brahim, L. A. (2013). Land Cover mapping and its relation to mass wasting and gullying in North-Western Rif (Morocco). Geomorphology: Relief, Process, Environment, 3, 335–352.

    Google Scholar 

  3. Chintan, A. S., Arora, M. K., & Pramod, K. V. (2004). Unsupervised classification of hyperspectral data: An ICA mixture model-based approach. International Journal of Remote Sensing, 25, 481–487.

    Google Scholar 

  4. Benz, U. C. (2004). Multi-resolution object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.

    Article  Google Scholar 

  5. Achbun, A., Mastere, M., & El Fellah, B. (2015). Up-scaling approach for a multi-series object based classification using CORINE typology. European Journal of Scientific Research, 132(2), 107–117. Pau et des pays de l’Adour, 308 p. (1991).

    Google Scholar 

  6. Cleve, C., Kelly, M., Kearns, F. R., & Moritz, M. (2008). Classification of the wildland urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 32(4), 317–326.

    Google Scholar 

  7. Corcoran, P., & Winstanley, A. (2008). Using texture to tackle the problem of scale in land-cover classification. In T. Blaschke, S. Lang, & G. Hay (Eds.), Object-based image analysis (113–132). Berlin: Springer.

    Google Scholar 

  8. Zhou, W., Troy, A., & Grove, M. (2008). Object-based Land Cover classification and change analysis in the Baltimore metropolitan area using multi-temporal high-resolution remote sensing data. Sensors, 8(3), 161–163.

    Google Scholar 

  9. George, P. P., Chariton, K., & Krishna, P. V. (2012). Support vector machines and object-based classification for obtaining Land-Use/cover cartography from Hyperion hyperspectral imagery. Computers and Geosciences, 41, 99–107.

    Google Scholar 

  10. Hájek, F. (2008). Process-based approach to automated classification of forest structures using medium format digital aerial photos and ancillary GIS information. European Journal of Forest Research, 127(2), 115–124.

    Article  Google Scholar 

  11. Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10, 989–1003.

    Article  Google Scholar 

  12. Lunetta, R., & Elvidge, C. (1999). Remote sensing change detection. London: Taylor & Francis, 320 p.

    Google Scholar 

  13. Berberoglu, S., & Akin, A. (2009). Assessing different remote sensing techniques to detect Land Cover/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11(1), 46–53.

    Google Scholar 

  14. Thauvin, J. P. (1979). Le basin du bassin Loukkos (Extrait de ressources en eau du maroc. TomeI: Domaine du rif et du Maroc oriental). Notes.et Mémoires. Service. Géooogiquel. Maroc, 231, 113–125.

    Google Scholar 

  15. El Morhit, M. (2009). Hydrochimie, éléments traces métalliques et incidences Ecotoxicologiques sur les différentes composantes d’un écosystème estuarien (Bas Loukkos). Thèse Doctorat ès science, Université Mohammed V de Rabat, 232 p.

    Google Scholar 

  16. El Kellouti, M. (2004). Modernisation de la gestion de l’irrigation dans le périmètre du Loukkos (Maroc). Projet INCO-WADEMED Actes du Séminaire Modernisation de l’Agriculture Irriguée (pp. 2–6). Rabat.

    Google Scholar 

  17. Durand-Delga, M. (1963). Essai sur les structures des domaines émergés autour de la Méditerranée occidentale. Geologische Rundschau Stuttgart, 5-3-2, 534–535.

    Article  Google Scholar 

  18. Kornprobst, J. G. (1974). Contribution à l’étude pétrographique et structurale de la zone interne du Rif (Maroc septentrional). Notes et Mémoires. Service. Géologique. Maroc, 251–256.

    Google Scholar 

  19. Maychou, S. (2009). Étude morphostructurale et cartographie SIG du Rharb Septentrional et du Prérif (Maroc). Analyse sismo-tectonique et modélisation de la déformation de la région de Moulay Bousselham. Thèse Doctorat ès science, Université Chouab Doukkali, Al Jadida (pp. 20–26).

    Google Scholar 

  20. Rampnoux, J. P., Angelier, J., Colleta, B., Fudral, S., Guillemin, M., & Pierre, G. (1979). Sur l’évolution néotectonique du Maroc septentrional. Géologie méditerranéenne, 6, 439–464.

    Google Scholar 

  21. Lespinasse, P. (1975). Géologie des zones externes et des flyschs entre Chaouen et Zoumi (Centre de la chaine rifaine, Maroc). Thèse. Université (Vol. VI). Paris, 248 p.

    Google Scholar 

  22. Ben Yaich, A. (2011). Evolution tectono-sédimentaire du Rif ex-terne Centro-Occidental (région de M’sila et Ouazzane, Maroc): La marge africaine du Jurassique au Crétacé, les bassins néogènes d’avant-fosse. Thèse Doctorat dEtat, Université de.

    Google Scholar 

  23. Global Land Use facility database. GLCF. http://glcfapp.glcf.umd.edu:8080/esdi/.

  24. Weibel, R., & Jones, C. B. (1998). Computational Perspectives On Map Generalisation. Geoinformatica, 301–304.

    Google Scholar 

  25. Baatz, M., & Schape, A. (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In T. Strobl, T. Blaschke, G. Griesebner (Eds.), Angewandte Geographische Informationsverabeitung. Beitragezum AGIT -Symp. Salzburg, Karlsruhe (Vol. XII, pp. 11–22).

    Google Scholar 

  26. Definiens developer, software (2014). http://www.definiens.com/.

  27. Card, D. H. (1980). Using known map categorical marginal frequencies to improve map accuracy. Photogrammetric Engineering and Remote Sensing, 48(43), 1–439.

    Google Scholar 

  28. Cohen, J. A. (1960). Coefficient of agreement of nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  29. Recensement Général de la Population et de l’Habitat (RGPH), Haut-Commissariat au Plan, Maroc (1994–2004).

    Google Scholar 

  30. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mastere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mastere, M., Achbun, A., El Fellah, S., El Fellah, B. (2020). Multi-source Object-Based Approach for Spatio-Temporal Evolution of Land Cover. In: Rebai, N., Mastere, M. (eds) Mapping and Spatial Analysis of Socio-economic and Environmental Indicators for Sustainable Development. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-21166-0_4

Download citation

Publish with us

Policies and ethics