Skip to main content

Biomaterials and Scaffolds for Repair of the Peripheral Nervous System

  • Reference work entry
  • First Online:
Peripheral Nerve Tissue Engineering and Regeneration

Abstract

Peripheral nerve injuries are a global challenge, causing long term disabilities to the patient and reducing quality of life. Such injuries are common and frequently require surgical intervention due to the complexity and significance of the injury. Autografts are the current clinical gold standard intervention, however, a major disadvantage exists with donor site morbidity and a lack of donor nerve tissue. Therefore, the use of nerve guide conduits (NGCs) is an attractive alternative approach to treat peripheral nerve injuries. Commercial NGCs are hollow tubes, and also wraps, manufactured from natural or synthetic materials. However, only modest success is reported with these devices, and therefore a need exists to create materials that are more beneficial for reinnervation, combined with more elegant methods for fabricating guidance structures. This chapter reviews current biomaterials used for peripheral nerve repair, both experimentally, clinically and commercially. We also discuss advances in the field, from hollow tube designs to those with complex structures, the use of intraluminal scaffolds, incorporation of growth factors and the use of autologous and allogenic supporting cells to improve nerve regeneration in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ (2007) ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng 13(12):2863–2870

    Article  Google Scholar 

  • Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V (2014) Peripheral nerve conduits: technology update. Med Devices (Auckl) 7:405–424

    Google Scholar 

  • Assaf K, Leal CV, Derami MS, de Rezende Duek EA, Ceragioli HJ, de Oliveira ALR (2017) Sciatic nerve repair using poly(ε-caprolactone) tubular prosthesis associated with nanoparticles of carbon and graphene. Brain Behav 7(8):e00755

    Article  Google Scholar 

  • Bąk M, Gutkowska ON, Wagner E, Gosk J (2017) The role of chitin and chitosan in peripheral nerve reconstruction. Polim Med 47(1):43–47

    Article  Google Scholar 

  • Basnett P, Ching KY, Stolz M, Knowles JC, Boccaccini AR, Smith C, Locke IC, Keshavarz T, Roy I (2013) Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications. React Funct Polym 73(10):1340–1348

    Article  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    Article  Google Scholar 

  • Behbehani M, Glen A, Taylor CS, Schuhmacher A, Claeyssens F, Haycock JW (2018) Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model. Int J Bioprint 4(1):1–13

    Google Scholar 

  • Belkas JS, Shoichet MS, Midha R (2004) Axonal guidance channels in peripheral nerve regeneration. Oper Tech Orthop 14(3):190–198

    Article  Google Scholar 

  • Bell JH, Haycock JW (2012) Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng Part B Rev 18(2):116–128

    Article  Google Scholar 

  • Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  Google Scholar 

  • Biazar E, Heidari Keshel S (2013) A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge. Cell Commun Adhes 20(1–2):41–49

    Article  Google Scholar 

  • Biazar E, Keshel SH (2013) Chitosan–cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. ASAIO J 59(6):651–659

    Article  Google Scholar 

  • Boecker A, Daeschler SC, Kneser U, Harhaus L (2019) Relevance and recent developments of chitosan in peripheral nerve surgery. Front Cell Neurosci 13:104

    Article  Google Scholar 

  • Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25(1):90

    Article  Google Scholar 

  • Bozkurt A, van Neerven SGA, Claeys KG, O’Dey DM, Sudhoff A, Brook GA, Sellhaus B, Schulz JB, Weis J, Pallua N (2014) The proximal medial sural nerve biopsy model: a standardised and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. BioMed Res Int 2014:121452–121463

    Google Scholar 

  • Bozkurt A, Claeys KG, Schrading S, Rödler JV, Altinova H, Schulz JB, Weis J, Pallua N, van Neerven SGA (2017) Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix. Eur J Med Res 22(1):22–34

    Article  Google Scholar 

  • Buttiglione M, Vitiello F, Sardella E, Petrone L, Nardulli M, Favia P, d’Agostino R, Gristina R (2007) Behaviour of SH-SY5Y neuroblastoma cell line grown in different media and on different chemically modified substrates. Biomaterials 28(19):2932–2945

    Article  Google Scholar 

  • Carvalho CR, Oliveira JM, Reis RL (2019) Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol 7(337):1–30

    Google Scholar 

  • Casalini T, Rossi F, Castrovinci A, Perale G (2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 7:259

    Article  Google Scholar 

  • Chen R, Hunt JA, Fawcett S, D’sa R, Akhtar R, Curran JM (2018) The optimization and production of stable homogeneous amine enriched surfaces with characterized nanotopographical properties for enhanced osteoinduction of mesenchymal stem cells. J Biomed Mater Res A 106(7):1862–1877

    Article  Google Scholar 

  • Chew SY, Mi R, Hoke A, Leong KW (2008) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29(6):653–661

    Article  Google Scholar 

  • Chu PK, Chena JY, Wanga LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng 36:143–206

    Google Scholar 

  • Daly W, Yao L, Zeugolis D, Windebank A, Pandit A (2012) A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9(67):202–221

    Article  Google Scholar 

  • Daly WT, Knight AM, Wang H, de Boer R, Giusti G, Dadsetan M, Spinner RJ, Yaszemski MJ, Windebank AJ (2013) Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair. Biomaterials 34(34):8630–8639

    Article  Google Scholar 

  • Daud MF, Pawar KC, Claeyssens F, Ryan AJ, Haycock JW (2012) An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33(25):5901–5913

    Article  Google Scholar 

  • de Luca AC, Lacour SP, Raffoul W, di Summa PG (2014) Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration? Neural Regen Res 9(22):1943–1948

    Article  Google Scholar 

  • de Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26(2):E5

    Article  Google Scholar 

  • Dellon AL, Mackinnon SE (1988) An alternative to the classical nerve graft for the management of the short nerve gap. Plast Reconstr Surg 82(5):849–856

    Article  Google Scholar 

  • Denis P, Wrzecionek M, Gadomska-Gajadhur A, Sajkiewicz P (2019) Poly(Glycerol Sebacate)–Poly(l-Lactide) nonwovens. Towards attractive electrospun material for tissue engineering. Polymers 11(12):1–26

    Google Scholar 

  • Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J, Brook GA (2010) Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 92(3):245–276

    Article  Google Scholar 

  • di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63(9):1544–1552

    Article  Google Scholar 

  • Diez-Ahedo R, Mendibil X, Márquez-Posadas CM, Quintana I, González F, Rodríguez JF, Zilic L, Sherborne C, Glen A, Taylor SC, Claeyssens F, Haycock WJ, Schaafsma W, González E, Castro B, Merino S (2020) UV-casting on methacrylated PCL for the production of a peripheral nerve implant containing an array of porous aligned microchannels. Polymers 12(4):1–19

    Google Scholar 

  • Duffy P, McMahon S, Wang X, Keaveney S, O’Cearbhaill ED, Quintana I, Rodríguez FJ, Wang W (2019) Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater Sci 7(12):4912–4943

    Article  Google Scholar 

  • Ebrahimi M, Ai J, Biazar E, Ebrahimi-Barough S, Khojasteh A, Yazdankhah M, Sharifi S, Ai A, Heidari-Keshel S (2018) In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. Artif Cells Nanomed Biotechnol 46(sup1):394–401

    Article  Google Scholar 

  • Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sust Energ Rev 79:1346–1352

    Article  Google Scholar 

  • Evans GRD, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gürlek A, Nabawi A, Lohman R, Patrick CW (1999) In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 20(12):1109–1115

    Article  Google Scholar 

  • Fadia NB, Bliley JM, DiBernardo GA, Crammond DJ, Schilling BK, Sivak WN, Spiess AM, Washington KM, Waldner M, Liao H-T, James IB, Minteer DM, Tompkins-Rhoades C, Cottrill AR, Kim D-Y, Schweizer R, Bourne DA, Panagis GE, Asher Schusterman M, Egro FM, Campwala IK, Simpson T, Weber DJ, Gause T, Brooker JE, Josyula T, Guevara AA, Repko AJ, Mahoney CM, Marra KG (2020) Long-gap peripheral nerve repair through sustained release of a neurotrophic factor in nonhuman primates. Sci Transl Med 12(527):eaav7753

    Article  Google Scholar 

  • Field J (2019) Manufacture, characterisation and in vivo assessment of nerve guidance conduits containing physical guidance cues. PhD thesis, White Rose Etheses Online, University of Sheffield

    Google Scholar 

  • Freier T, Montenegro R, Shan Koh H, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26(22):4624–4632

    Article  Google Scholar 

  • Frost HK, Andersson T, Johansson S, Englund-Johansson U, Ekström P, Dahlin LB, Johansson F (2018) Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo. Nat Sci Rep 8(1):16716

    Article  Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Article  Google Scholar 

  • Georgiou M, Bunting SCJ, Davies HA, Loughlin AJ, Golding JP, Phillips JB (2013) Engineered neural tissue for peripheral nerve repair. Biomaterials 34(30):7335–7343

    Article  Google Scholar 

  • Ghafaralahi S, Ebrahimian-Hosseinabadi M, Zargar Kharazi A (2018) Poly(glycerol-sebacate)/poly(caprolactone)/graphene nanocomposites for nerve tissue engineering. J Bioact Compat Polym 33(5):529–542

    Article  Google Scholar 

  • Gnavi S, Fornasari BE, Tonda-Turo C, Ciardelli G, Zanetti M, Geuna S, Perroteau I (2015) The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Mater Sci Eng Part C 48:620–631

    Article  Google Scholar 

  • Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5(7):2560–2569

    Article  Google Scholar 

  • Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6(2):119–127

    Article  Google Scholar 

  • Hashimoto T, Suzuki Y, Kitada M, Kataoka K, Wu S, Suzuki K, Endo K, Nishimura Y, Ide C (2002) Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Exp Brain Res 146(3):356–368

    Article  Google Scholar 

  • Hazari A, Wiberg M, Johansson-Rudén G, Green C, Terenghi G (1999) A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br J Plast Surg 52(8):653–657

    Article  Google Scholar 

  • Hazer DB, Bal E, Nurlu G, Benli K, Balci S, Öztürk F, Hazer B (2013) In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft. J Zhejiang Univ Sci B 14(11):993–1003

    Article  Google Scholar 

  • Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present, future. Adv Healthc Mater 8(1):1800465

    Article  Google Scholar 

  • Huang W, Begum R, Barber T, Ibba V, Tee NCH, Hussain M, Arastoo M, Yang Q, Robson LG, Lesage S, Gheysens T, Skaer NJV, Knight DP, Priestley JV (2012) Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 33(1):59–71

    Article  Google Scholar 

  • Huang C, Ouyang Y, Niu H, He N, Ke Q, Jin X, Li D, Fang J, Liu W, Fan C, Lin T (2015) Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl Mater Interfaces 7(13):7189–7196

    Article  Google Scholar 

  • Huxley AF, Stämpeli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol 108(3):315–339

    Article  Google Scholar 

  • Jansen K, van der Werff JFA, van Wachem PB, Nicolai JPA, de Leij LFMH, van Luyn MJA (2004) A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 25(3):483–489

    Article  Google Scholar 

  • Jiang X, Lim SH, Mao H-Q, Chew SY (2010) Current applications and future perspectives of artificial nerve conduits. Exp Neurol 223(1):86–101

    Article  Google Scholar 

  • Johnson DW, Sherborne C, Didsbury MP, Pateman C, Cameron NR, Claeyssens F (2013) Macrostructuring of emulsion-templated porous polymers by 3D laser patterning. Adv Mater 25(23):3178–3181

    Article  Google Scholar 

  • Kaewkhaw R, Scutt AM, Haycock JW (2011) Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia 59(5):734–749

    Article  Google Scholar 

  • Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G (2008) Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg 61(6):669–675

    Article  Google Scholar 

  • Karimi M, Biazar E, Keshel SH, Ronaghi A, Doostmohamadpour J, Janfada A, Montazeri A (2014) Rat Sciatic Nerve Reconstruction Across a 30 mm Defect Bridged by an Oriented Porous PHBV Tube With Schwann Cell as Artificial Nerve Graft. ASAIO 60(2):224–233

    Google Scholar 

  • Kehoe S, Zhang XF, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43(5):553–572

    Article  Google Scholar 

  • Kim YT, Haftel VK, Kumar S, Bellamkonda RV (2008) The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29(21):3117–3127

    Article  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274

    Article  Google Scholar 

  • Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Article  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  Google Scholar 

  • Lee D-Y, Choi B-H, Park J-H, Zhu S-J, Kim B-Y, Huh J-Y, Lee S-H, Jung J-H, Kim S-H (2006) Nerve regeneration with the use of a poly(l-lactide-co-glycolic acid)-coated collagen tube filled with collagen gel. J Cranio-Maxillofac Surg 34(1):50–56

    Article  Google Scholar 

  • Li S, Wu H, Hu X-D, Tu C-Q, Pei F-X, Wang G-L, Lin W, Fan H-S (2012) Preparation of electrospun PLGA-silk fibroin nanofibers-based nerve conduits and evaluation in vivo. Artif Cells Blood Substit Biotechnol 40(1–2):171–178

    Article  Google Scholar 

  • Li R, Liu H, Huang H, Bi W, Yan R, Tan X, Wen W, Wang C, Song W, Zhang Y, Zhang F, Hu M (2018) Chitosan conduit combined with hyaluronic acid prevent sciatic nerve scar in a rat model of peripheral nerve crush injury. Mol Med Rep 17(3):4360–4368

    Google Scholar 

  • Li R, Li D-h, Zhang H-y, Wang J, Li X-k, Xiao J (2020) Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacologica Sinica 0:1–12

    Google Scholar 

  • Liou H-M, Rau L-R, Huang C-C, Lu M-R, Hsu F-Y (2013) Electrospun hyaluronan-gelatin nanofibrous matrix for nerve tissue engineering. J Nanomater 2013:613638

    Google Scholar 

  • Liu J-J, Wang C-Y, Wang J-G, Ruan H-J, Fan C-Y (2011) Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res A 96A(1):13–20

    Article  Google Scholar 

  • Liu T, Houle JD, Xu J, Chan BP, Chew SY (2012) Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng A 18(9–10):1057–1066

    Article  Google Scholar 

  • Lizarraga-Valderrama LR, Nigmatullin R, Taylor C, Haycock JW, Claeyssens F, Knowles JC, Roy I (2015) Nerve tissue engineering using blends of poly(3-hydroxyalkanoates) for peripheral nerve regeneration. Eng Life Sci 15(6):612–621

    Article  Google Scholar 

  • Lizarraga-Valderrama LR, Panchal B, Thomas C, Boccaccini AR, Roy I (2016) Biomedical applications of polyhydroxyalkanoates, biomaterials from nature for advanced devices and therapies, pp 337–383

    Book  Google Scholar 

  • Lizarraga-Valderrama LR, Taylor CS, Claeyssens F, Haycock JW, Knowles JC, Roy I (2019) Unidirectional neuronal cell growth and differentiation on aligned polyhydroxyalkanoate blend microfibres with varying diameters. J Tissue Eng Regen Med 13(9):1581–1594

    Article  Google Scholar 

  • Loh XJ, Abdul Karim A, Owh C (2015) Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. J Mater Chem B 3(39):7641–7652

    Article  Google Scholar 

  • Lowe JS, Anderson PG (2015) Chapter 6: Nervous tissue. In: Stevens & Lowe’s human histology, 4th edn. Published by Mosby Ltd, pp 84–104

    Google Scholar 

  • Magaz A, Faroni A, Gough JE, Reid AJ, Li X, Blaker JJ (2018) Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv Healthc Mater 7(23):1800308

    Article  Google Scholar 

  • Marani E, Lakke EAJF, Paxinos G (2012) Chapter 4: Peripheral nervous system topics A2. In: Mai JK (ed) The human nervous system, 3rd edn, Published by Academic Press, Elsevier, pp 82–140

    Google Scholar 

  • Meyer C, Stenberg L, Gonzalez-Perez F, Wrobel S, Ronchi G, Udina E, Suganuma S, Geuna S, Navarro X, Dahlin LB, Grothe C, Haastert-Talini K (2016) Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76:33–51

    Article  Google Scholar 

  • Mobasseri A, Faroni A, Minogue BM, Downes S, Terenghi G, Reid AJ (2015) Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng A 21(5–6):1152–1162

    Article  Google Scholar 

  • Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 173(2):213–223

    Article  Google Scholar 

  • Mosahebi A, Wiberg M, Terenghi G (2003) Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 9(2):209–218

    Article  Google Scholar 

  • Nectow AR, Marra KG, Kaplan DL (2012) Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev 18(1):40–50

    Article  Google Scholar 

  • Neubrech F, Heider S, Harhaus L, Bickert B, Kneser U, Kremer T (2016) Chitosan nerve tube for primary repair of traumatic sensory nerve lesions of the hand without a gap: study protocol for a randomized controlled trial. Trials 17:48–48

    Article  Google Scholar 

  • Oh SH, Kim JH, Song KS, Jeon BH, Yoon JH, Seo TB, Namgung U, Lee IW, Lee JH (2008) Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials 29(11):1601–1609

    Article  Google Scholar 

  • Oh SH, Kim JR, Kwon GB, Namgung U, Song KS, Lee JH (2013) Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration. Tissue Eng Part C Methods 19(3):233–243

    Article  Google Scholar 

  • Okamoto H, Hata K-I, Kagami H, Okada K, Ito Y, Narita Y, Hirata H, Sekiya I, Otsuka T, Ueda M (2010) Recovery process of sciatic nerve defect with novel bioabsorbable collagen tubes packed with collagen filaments in dogs. J Biomed Mater Res A 92A(3):859–868

    Google Scholar 

  • Owen R, Sherborne C, Paterson T, Green NH, Reilly GC, Claeyssens F (2016) Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J Mech Behav Biomed Mater 54:159–172

    Article  Google Scholar 

  • Pateman CJ, Harding AJ, Glen A, Taylor CS, Christmas CR, Robinson PP, Rimmer S, Boissonade FM, Claeyssens F, Haycock JW (2015) Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49:77–89

    Article  Google Scholar 

  • Paxinos G, Xu-Feng H, Sengul G, Watson C (2012) Chapter 8: Organization of Brainstem nuclei. In: The human nervous system, 3rd edn. Published by Academic press, Elsevier, pp 260–327

    Google Scholar 

  • Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165(4):1218–1223

    Article  Google Scholar 

  • Pfister LA, Papaloïzos M, Merkle HP, Gander B (2007) Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 12(2):65–82

    Article  Google Scholar 

  • Pfister BJ, Gordon T, Loverde JR, Kochar AS, Mackinnon SE, Cullen DK (2011) Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng 39(2):81–124

    Article  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  Google Scholar 

  • Phillips JB, Bunting SCJ, Hall SM, Brown RA (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng 11(9–10):1611–1617

    Article  Google Scholar 

  • Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 37(8):1051–1078

    Article  Google Scholar 

  • Reid AJ, de Luca AC, Faroni A, Downes S, Sun M, Terenghi G, Kingham PJ (2013) Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neurosci Lett 544:125–130

    Article  Google Scholar 

  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279–821279

    Google Scholar 

  • Rosson GD, Williams EH, Dellon AL (2009) Motor nerve regeneration across a conduit. Microsurgery 29(2):107–114

    Article  Google Scholar 

  • Sakai Y, Matsuyama Y, Takahashi K, Sato T, Hattori T, Nakashima S, Ishiguro N (2007) New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration. Biomed Mater Eng 17:191–197

    Google Scholar 

  • Shen H, Shen ZL, Zhang PH, Chen NL, Wang YC, Zhang ZF, Jin YQ (2010) Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes peripheral nerve regeneration in canine tibial nerve defect repair. J Biomed Mater Res B Appl Biomater 95B(1):161–170

    Article  Google Scholar 

  • Shen G, Hu X, Guan G, Wang L (2015) Surface modification and characterisation of silk fibroin fabric produced by the layer-by-layer self-assembly of multilayer alginate/regenerated silk fibroin. PLoS One 10(4):0124811–0124811

    Google Scholar 

  • Singh D, Harding AJ, Albadawi E, Boissonade FM, Haycock JW, Claeyssens F (2018) Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater 78:48–63

    Article  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6(4):1285–1309

    Article  Google Scholar 

  • Sun M, Kingham PJ, Reid AJ, Armstrong SJ, Terenghi G, Downes S (2009) In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit. J Biomed Mater Res A 93A(4):1470–1481

    Google Scholar 

  • Sun M, McGowan M, Kingham PJ, Terenghi G, Downes S (2010) Novel thin-walled nerve conduit with microgrooved surface patterns for enhanced peripheral nerve repair. J Mater Sci Mater Med 21(10):2765–2774

    Article  Google Scholar 

  • Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer RS, Vacanti JP, Hadlock TA (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26(27):5454–5464

    Article  Google Scholar 

  • Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y (1999) Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci Lett 259(2):75–78

    Article  Google Scholar 

  • Szarek D, Marycz K, Bednarz P, Tabakow P, Jarmundowicz W, Laska J (2013) Influence of calcium alginate on peripheral nerve regeneration: in vivo study. Biotechnol Appl Biochem 60(6):547–556

    Article  Google Scholar 

  • Terris DJ, Toft KM, Moir M, Lum J, Wang M (2001) Brain-derived neurotrophic factor–enriched collagen tubule as a substitute for autologous nerve grafts. Arch Otolaryngol Head Neck Surg 127(3):294–298

    Article  Google Scholar 

  • Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280

    Article  Google Scholar 

  • Tokiwa Y, Calabia BP (2007) Biodegradability and biodegradation of polyesters. J Polym Environ 15(4):259–267

    Article  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864

    Article  Google Scholar 

  • Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 3(6):853–868

    Article  Google Scholar 

  • Vasvani S, Kulkarni P, Rawtani D (2019) Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 151:1012–1029

    Google Scholar 

  • Verdú E, Labrador RO, Rodríguez FJ, Ceballos D, Forés J, Navarro X (2002) Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes. Restor Neurol Neurosci 20(5):169–179

    Google Scholar 

  • Waitayawinyu T, Parisi DM, Miller B, Luria S, Morton HJ, Chin SH, Trumble TE (2007) A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J Hand Surg Am 32(10):1521–1529

    Article  Google Scholar 

  • Wang S, Cai L (2010) Polymers for fabricating nerve conduits. Int J Poly Sci 2010:138686

    Google Scholar 

  • Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K (2009) Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 91A(4):994–1005

    Article  Google Scholar 

  • Wang X, He J, Wang Y, Cui F-Z (2012) Hyaluronic acid-based scaffold for central neural tissue engineering. Interface focus 2(3):278–291

    Article  Google Scholar 

  • Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP (2000) A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 106(5):1036–1045

    Article  Google Scholar 

  • Wrobel S, Serra SC, Ribeiro-Samy S, Sousa N, Heimann C, Barwig C, Grothe C, Salgado AJ, Haastert-Talini K (2014) In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering. Tissue Eng A 20(17–18):2339–2349

    Article  Google Scholar 

  • Xu X-Y, Li X-T, Peng S-W, Xiao J-F, Liu C, Fang G, Chen KC, Chen G-Q (2010) The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 31(14):3967–3975

    Article  Google Scholar 

  • Yang Y, De Laporte L, Rives CB, Jang J-H, Lin W-C, Shull KR, Shea LD (2005) Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release 104(3):433–446

    Article  Google Scholar 

  • Yang Y, Ding F, Wu J, Hu W, Liu W, Liu J, Gu X (2007) Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials 28(36):5526–5535

    Article  Google Scholar 

  • Yao L, Billiar KL, Windebank AJ, Pandit A (2010) Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng Part C Methods 16(6):1585–1596

    Article  Google Scholar 

  • Young RC, Wiberg M, Terenghi G (2002) Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br J Plast Surg 55(3):235–240

    Article  Google Scholar 

  • Yu W, Zhao W, Zhu C, Zhang X, Ye D, Zhang W, Zhou Y, Jiang X, Zhang Z (2011) Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci 12:68–68

    Article  Google Scholar 

  • Zhao K, Deng Y, Chun Chen J, Chen G-Q (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045

    Article  Google Scholar 

Download references

Acknowledgments

We kindly thank and acknowledge Dr. Jonathan Field for giving permission to use the image of fibers in a NGC (Fig. 4) manufactured from the methods in his PhD thesis “Manufacture, characterisation and in vivo assessment of nerve guidance conduits containing physical guidance cues” (University of Sheffield, U.K) published in White Rose eTheses Online (https://etheses.whiterose.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Haycock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Taylor, C.S., Haycock, J.W. (2022). Biomaterials and Scaffolds for Repair of the Peripheral Nervous System. In: Phillips, J.B., Hercher, D., Hausner, T. (eds) Peripheral Nerve Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-21052-6_3

Download citation

Publish with us

Policies and ethics