Skip to main content

From Neurons to Networks: Critical Slowing Down Governs Information Processing Across Vigilance States

  • Chapter
  • First Online:
The Functional Role of Critical Dynamics in Neural Systems

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 11))

Abstract

The general idea that computational capabilities are maximized at or nearby critical states related to phase transitions or bifurcations led to the hypothesis that neural systems in the brain operate at or close to a critical state. Near phase transitions, a system is expected to recover more slowly from small perturbations, a phenomenon called critical slowing down. In this chapter we will review and discuss recent studies that have identified critical slowing down as a pervasive feature in neural system functioning and information processing across different spatial scales from individual neurons to cortical networks. First, we will provide an easily accessible introduction into the theory of critical slowing down with an emphasis on its scaling laws. Second, we will review experimental work using the whole-cell patch clamp technique demonstrating how critical slowing down governs the onset of spiking in individual neurons. The associated scaling laws identify a saddle-node bifurcation underlying the transition to spiking in pyramidal neurons and fast-spiking interneurons. We will discuss implications for the integration of synaptic inputs and neuronal information processing in general. Third, we will review evidence for the existence of critical slowing down at the cortical network level. Recent studies in rodents and humans conclusively show that cortex is goverend by long dynamical timescales expected from critical slowing down that support temporal information integration but change as a function of vigilance state and time awake. The results provide novel mechanistic and functional links between behavioural manifestations of sleep, waking and sleep deprivation, and specific measurable changes in the network dynamics relevant for characterizing the brain’s changing ability to integrate and process information over time and across vigilance states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banks, S., Dinges, D.F.: Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 3, 519–528 (2007)

    PubMed  PubMed Central  Google Scholar 

  2. Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003)

    Article  CAS  Google Scholar 

  3. Bellay, T., Klaus, A., Seshadri, S., Plenz, D.: Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state. Elife 4, e07,224 (2015)

    Google Scholar 

  4. Benayoun, M., Kohrman, M., Cowan, J., van Drongelen, W.: EEG, temporal correlations, and avalanches. J. Clin. Neurophysiol. 27, 458–464 (2010)

    Article  Google Scholar 

  5. Burkitt, A.: A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006)

    Article  CAS  Google Scholar 

  6. Carpenter, S.R., Brock, W.A.: Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311318 (2006)

    Google Scholar 

  7. Chaudhuri, R., Knoblauch, K., Gariel, M.A., Kennedy, H., Wang, X.J.: A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88(2), 419–431 (2015)

    Article  CAS  Google Scholar 

  8. Chialvo, D.R.: Emergent complex neural dynamics. Nat. Phys. 6, 744–750 (2010)

    Article  CAS  Google Scholar 

  9. Fricker, D., Miles, R.: EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28(2), 559–569 (2000)

    Article  CAS  Google Scholar 

  10. Friston, K., Breakspear, M., Deco, G.: Perception and self-organized instability. Front. Comput. Neurosci. 6, 44 (2012)

    Article  Google Scholar 

  11. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY (1983)

    Google Scholar 

  12. Haldeman, C., Beggs, J.: Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94, 058, 101 (2005)

    Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 10, 500 (1952)

    Article  CAS  Google Scholar 

  14. Ives, A.R.: Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217233 (1995)

    Article  Google Scholar 

  15. Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bif. Chaos 10, 1171–1266 (2000)

    Article  Google Scholar 

  16. Jacobson, G.A., Diba, K., Yaron-Jakoubovitch, A., Oz, Y., Koch, C., Segev, I., Yarom, Y.: Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564, 145160 (2005)

    Article  Google Scholar 

  17. Kiebel, S.J., Daunizeau, J., Friston, K.J.: A hierarchy of time-scales and the brain. PLoS Comput. Biol. 4(11), e1000,209 (2008)

    Article  Google Scholar 

  18. Killgore, W.D.: Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105–129 (2010)

    Article  Google Scholar 

  19. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–351 (2006)

    Article  CAS  Google Scholar 

  20. Kramer, M.A., Truccolo, W., Eden, U.T., Lepage, K.Q., Hochberg, L.R., Eskandar, E.N., Madsen, J.R., Lee, J.W., Maheshwari, A., Halgren, E., Chu, C.J., Cash, S.S.: Human seizures self-terminate across spatial scales via a critical transition. Proc. Natl. Acad. Sci. U.S.A. 109(51), 21116–21121 (2012)

    Article  CAS  Google Scholar 

  21. Kringelbach, M.L., McIntosh, A.R., Ritter, P., Jirsa, V.K., Deco, G.: The rediscovery of slowness: exploring the timing of cognition. Trends Cogn. Sci. (Regul. Ed.) 19(10), 616–628 (2015)

    Article  Google Scholar 

  22. Kuehn, C.: A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240(12), 1020–1035 (2011)

    Article  CAS  Google Scholar 

  23. Lade, S.J., Gross, T.: Early warning signals for critical transitions: a generalized modeling approach. PLoS Comput. Biol. 8(2), e1002,360 (2012)

    Article  CAS  Google Scholar 

  24. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42, 12–37 (1990)

    Article  Google Scholar 

  25. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 13701377 (2001)

    Article  Google Scholar 

  26. Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., Tononi, G.: Breakdown of cortical effective connectivity during sleep. Science 309(5744), 2228–2232 (2005)

    Article  CAS  Google Scholar 

  27. Meisel, C.: Linking cortical network synchrony and excitability. Commun. Integr. Biol. 9(1), e1128,598 (2016)

    Article  Google Scholar 

  28. Meisel, C., Bailey, K., Achermann, P., Plenz, D.: Decline of long-range temporal correlations in the human brain during sustained wakefulness. Sci. Rep. 7(1), 11, 825 (2017)

    Google Scholar 

  29. Meisel, C., Klaus, A., Kuehn, C., Plenz, D.: Critical slowing down governs the transition to neuron spiking. PLoS Comput. Biol. 11(2), e1004,097 (2015)

    Article  Google Scholar 

  30. Meisel, C., Klaus, A., Vyazovskiy, V.V., Plenz, D.: The interplay between long- and short-range temporal correlations shapes cortex dynamics across vigilance states. J. Neurosci. 37(42), 10114–10124 (2017)

    Article  CAS  Google Scholar 

  31. Meisel, C., Kuehn, C.: Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures. PLoS One 7(2), e30,371 (2012)

    Article  CAS  Google Scholar 

  32. Meisel, C., Olbrich, E., Shriki, O., Achermann, P.: Fading signatures of critical brain dynamics during sustained wakefulness in humans. J. Neurosci. 33(44), 17363–17372 (2013)

    Article  CAS  Google Scholar 

  33. Mignot, E.: Why we sleep: the temporal organization of recovery. PLoS Biol. 6(4), e106 (2008)

    Article  Google Scholar 

  34. Petermann, T., Thiagarajan, T.C., Lebedev, M.A., Nicolelis, M.A.L., Chialvo, D.R., Plenz, D.: Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc. Natl. Acad. Sci. U.S.A. 106, 15921–15926 (2009)

    Article  CAS  Google Scholar 

  35. Priesemann, V., Wibral, M., Valderrama, M., Propper, R., Le Van Quyen, M., Geisel, T., Triesch, J., Nikoli?, D., Munk, M.H.: Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014)

    Google Scholar 

  36. Rinzel, J.: A formal classification of bursting mechanisms in excitable systems. In: Proceedings of International Congress Math, Berkeley (1986)

    Google Scholar 

  37. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling: From Ions to Networks, p. 251. MIT Press, Cambridge, MA (1989)

    Google Scholar 

  38. Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 5359 (2009)

    Article  Google Scholar 

  39. Scheffer, M., Carpenter, S.R., Lenton, T.M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I.A., Levin, S.A., van Nes, E.H., Pascual, M., Vandermeer, J.: Anticipating critical transitions. Science 338, 344–348 (2012)

    Article  CAS  Google Scholar 

  40. Schöner, G., Kelso, J.A.S.: Dynamic pattern generation in behavioral and neural systems. Science 239, 1513–1520 (1988)

    Article  Google Scholar 

  41. Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D.: Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 9, 15595–15600 (2009)

    Article  Google Scholar 

  42. Steyn-Ross, D.A., Steyn-Ross, M.L., Wilson, M.T., Sleigh, J.W.: White-noise susceptibility and critical slowing in neurons near spiking threshold. Phys. Rev. E 74, 051, 920 (2006)

    Google Scholar 

  43. Tononi, G.: Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215(3), 216–242 (2008)

    Article  Google Scholar 

  44. Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  Google Scholar 

  45. Van Dongen, H.P., Maislin, G., Mullington, J.M., Dinges, D.F., Van Dongen, H.P., Mullington, J.M., Dinges, D.F.: The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26(2), 117–126 (2003)

    Article  Google Scholar 

  46. Vyazovskiy, V.V., Olcese, U., Hanlon, E.C., Nir, Y., Cirelli, C., Tononi, G.: Local sleep in awake rats. Nature 472(7344), 443–447 (2011)

    Article  CAS  Google Scholar 

  47. Wissel, C.: A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984)

    Article  CAS  Google Scholar 

  48. Worrell, G.A., Cranstoun, S.D., Echauz, J., Litt, B.: Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport 13, 2017–2021 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Meisel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meisel, C. (2019). From Neurons to Networks: Critical Slowing Down Governs Information Processing Across Vigilance States. In: Tomen, N., Herrmann, J., Ernst, U. (eds) The Functional Role of Critical Dynamics in Neural Systems . Springer Series on Bio- and Neurosystems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-20965-0_4

Download citation

Publish with us

Policies and ethics