Skip to main content

Robust Training of Radial Basis Function Neural Networks

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11508))

Included in the following conference series:

Abstract

Radial basis function (RBF) neural networks represent established machine learning tool with various interesting applications to nonlinear regression modeling. However, their performance may be substantially influenced by outlying measurements (outliers). Promising modifications of RBF network training have been available for the classification of data contaminated by outliers, but there remains a gap of robust training of RBF networks in the regression context. A novel robust approach based on backward subsample selection (i.e. instance selection) is proposed and presented in this paper, which searches sequentially for the most reliable subset of observations and finally performs outlier deletion. The novel approach is investigated in numerical experiments and is also applied to robustify a multilayer perceptron. The results on data containing outliers reveal the improved performance compared to conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, A.C., Riani, M., Cerioli, A.: The forward search: theory and data analysis. J. Korean Stat. Soc. 39, 117–134 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ben-Gal, I.: Outlier detection. In: Maimon, O., Rockach, L. (eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, 2nd edn, pp. 117–130. Springer, New York (2010). https://doi.org/10.1007/978-1-4939-7131-2

    Chapter  Google Scholar 

  3. Borş, A.G., Pitas, I.: Robust RBF networks. In: Howlett, R.J., Jain, L.C., Kacprzyk, J. (eds.) Radial Basis Function Networks 1. Recent Developments in Theory and Applications, pp. 123–133. Physica Verlag Rudolf Liebing KG, Vienna (2001)

    Google Scholar 

  4. Broniatowski, M., Jurečková, J., Kalina, J.: Likelihood ratio under measurement errors. Entropy 20, 966 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cerioli, A., Riani, M., Atkinson, A.C., Corbellini, A.: The power of monitoring: how to make the most of a contaminated multivariate sample. Stat. Methods Appl. 27, 559–587 (2018)

    Article  MathSciNet  Google Scholar 

  6. Davies, L.: Data Analysis and Approximate Models. Model Choice, Location-Scale, Analysis of Variance, Nonparametric Regression and Image Analysis. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  7. Dendek, C., Mańdziuk, J.: Improving performance of a binary classifier by training set selection. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 128–135. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87536-9_14

    Chapter  Google Scholar 

  8. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine (2010). http://archive.ics.uci.edu/ml/

  9. Grabaskas, N., Si, D.: Anomaly detection from kepler satellite time-series data. In: Perner, P. (ed.) MLDM 2017. LNCS (LNAI), vol. 10358, pp. 220–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62416-7_16

    Chapter  Google Scholar 

  10. Harrell, F.: Regression Modeling Strategies, With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd edn. Springer, New York (2015). https://doi.org/10.1007/978-1-4757-3462-1

    Book  MATH  Google Scholar 

  11. Haykin, S.O.: Neural Networks and Learning Machines: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  12. Jurečková, J., Picek, J., Schindler, M.: Robust Statistical Methods with R, 2nd edn. Chapman & Hall/CRC, Boca Raton (2019)

    MATH  Google Scholar 

  13. Kalina, J.: Three contributions to robust regression diagnostics. J. Appl. Math. Statist. Inf. 11, 69–78 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kalina, J.: A robust pre-processing of BeadChip microarray images. Biocybern. Biomed. Eng. 38, 556–563 (2018)

    Article  Google Scholar 

  15. Kordos, M., Rusiecki, A.: Reducing noise impact on MLP training–techniques and algorithms to provide noise-robustness in MLP network training. Soft. Comput. 20, 46–65 (2016)

    Article  Google Scholar 

  16. Kůrková, V., Kainen, P.C.: Comparing fixed and variable-width gaussian networks. Neural Netw. 57, 23–28 (2014)

    Article  Google Scholar 

  17. Lee, C.C., Chung, P.C., Tsai, J.R., Chang, C.I.: Robust radial basis function neural networks. IEEE Trans. Syst. Man Cybern. B 29, 674–685 (1999)

    Article  Google Scholar 

  18. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  19. Neruda, R., Vidnerová, P.: Learning errors by radial basis function neural networks and regularization networks. Int. J. Grid Distrib. Comput. 1, 49–57 (2009)

    Google Scholar 

  20. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). https://www.R-project.org/

  21. Rusiecki, A.: Robust learning algorithm based on LTA estimator. Neurocomputing 120, 624–632 (2013)

    Article  Google Scholar 

  22. Rusiecki, A., Kordos, M., Kamiński, T., Greń, K.: Training neural networks on noisy data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 131–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_13

    Chapter  Google Scholar 

  23. Su, M., Deng, W.: A fast robust learning algorithm for RBF network against outliers. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS, vol. 4113, pp. 280–285. Springer, Heidelberg (2006). https://doi.org/10.1007/11816157_28

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Barbora Peštová for technical assistance and six anonymous referees for valuable suggestions leading to improvements of the paper. The work is supported by the projects 19-05704S (J. Kalina) and 18-23827S (P. Vidnerová) of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Vidnerová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalina, J., Vidnerová, P. (2019). Robust Training of Radial Basis Function Neural Networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics